nal Computer

PB-770

ER,
S MANUAL

..........
.......

’-.._'_,. o
........







rrrrrrrrrrrrrrr

PB-770

OWNER'S MANUAL



INTRODUCTION

Carrying the compact PB-770 personal computer is equivalent to taking
along the capacity of a tabletop model. RAM (Random Access Memory)
can be expanded up to 32K bytes, which gives you a broad range of
30,000 character storage.

Writing (storing) data in the RAM is an easy process using the BASIC
language programming described in this manual. And once the data you
want has been stored, it can be read selectively anytime or changed to
suit new applications. Remember, a computer is worthless without a
program, so the more you learn about BASIC language programming,
the more you will be able to utilize the many advantages of personal
computing.

Once you have seen how well the PB-770 can serve you, its functions can
be broadened by connecting an optional plotter-printer with cassette
interface. This allows the fast preparation of expressive 4-color graphs
and tables.

You can be sure that the more you use the PB-770 the closer a companion
it will become. The aims of this manual are to first build your familiarity

with this clever personal computer so you can start to make full use of it
in your daily life.



CONTENTS

cHAPTERT GENERAL GUIDE

1-
1-
1-
1-
1-
1-

PRIOR TOOPERATION ...... ... it 12
SYSTEM CONFIGURATION AND CONNECTIONS . . .. .. 13
BATTERY MAINTENANCE ......... ... ... . ... ... 15
RAM EXPANSION PACK (OPTIONAL) ............... 17
NOMENCLATURE AND OPERATION . ............... 18
TEST OPERATION ... . 19

CHAPTER2 KEY OPERATION AND

2-
2-

2-

2-
2-5
2-5-1
2-6
2-7
2-
2-9

DISPLAY
KEY FUNCTIONS IN THE DIRECT MODE, . ........... 22
KEY FUNCTIONS IN THE SHIFTMODE . ............. 23
CAPSMODE. ... ... 23
KEY FUNCTIONS IN THE FUNCTION MODE. ......... 24
EDITING AND SPECIAL KEY FUNCTIONS. ........... 24
KEY FUNCTIONS IN KANJIMODE. . ................ 25a
CALCULATION FUNCTIONS . ... ... .ot 26
VARIABLES. . ... 29
DISPLAYSCREEN. ... ..o 31
NUMBER OF BYTES USED FOR VARIABLES ......... 32

CHAPTER3 “BASIC” REFERENCE

3-
3-
33
3-

3-

3-
3-7
3-

3-
3-10
3-11

INTRODUCTIONTOBASIC . ..o ooeeeee e 34
USING THE KEYS . . oot ee e e 35
VARIABLES AND ASSIGNMENT. . .................. 37
USING VARIABLES ..\ttt 39
PROGRAM ENTRY ..\ otiei e, 40
BASICPROGRAMMING [1] ..o, 42
BASIC PROGRAMMING [2] +.vveeee e 45
PROGRAM EXECUTION ...t 51
DISPLAY SCREEN CONFIGURATION .. ............. 53
REPEAT PROGRAM EXECUTION .. ..ooeoeeen. . 55
SUM TOTAL PROGRAM ..ot 59



CONTENTS

3-12 CHARACTER VARIABLES . ..., 62
3-13 WHAT IS ADIMENSION? ..o oot 64
3-14 NUMERICAL ARRAY VARIABLES ................. 67
3-15 NUMERICAL ARRAY PROGRAMMING .............. 72
316 CHARACTER ARRAY VARIABLES ................. 79
3-17 COMBINATION OF STRING ARRAYS

AND NUMERICAL ARRAYS . oo 83
3-18 STATISTICAL FUNCTIONS ... ovveeeeneiieeennn. 87
3-19 USING GRAPHIC CHARACTERS . ..o 93
3-20 DISPLAYING PATTERNS . ..\ttt eeeeeeee e 95
3-21 PB-770 GRAPHICFUNCTIONS .. ...ouuuinennn.. 100
3-22 GRAPHIC COMMANDS AND

SCREEN COORDINATES ..\ v veeeeeeeeeeaa 101
323 DRAWING ACURVE ...t 106
324 DRAWING ALINEGRAPH ..., 108
3-25 PREPARATION FOR DRAWING A BAR GRAPH ... ... 110
326  TWO EXAMPLES OF BAR GRAPH PROGRAMS . . . .. .. 112
327 ANIMATION DRAWING . ... veeeieeeeeaan 115
3-28 GAME APPLICATIONS . ..o vv et 119
329 DRAWING A PATTERN WITH

THE PLOTTERPRINTER . ..o o ee et 122
3-30 USING THE PLOTTER-PRINTER ......ovvvvnnnn... 125
3-31 USING PB-700 PROGRAMS . ...\, 127
PrefacetoChapter 4 ... ... ... i, 128

cHAPTER4 COMMAND REFERENCE

41 MANUAL COMMANDS . ..o 130

AUTO e oo e e e 130

CONT o oot 131

DELETE . . .ot e e e e e e e e e 132

EDIT . e e e e e e e e 134

LIST/LLIST ottt e e e e e e e 137



CONTENTS

4-2

LOAD .ottt 139
NEW/NEW ALL . ..ottt 143
PASS . . 144
PROG ..ttt 146
RUN e 147
SAVE .« o e 148
SYSTEM . .ottt 151
VERIFY o 153
PROGRAMCOMMANDS ... ... . . 154
ANGLE ... 154
BEEP . ittt e 155
CHAIN . .o 156
CLEAR ..ttt 158
CLS ottt e 161
DIM L 162
DRAW/DRAWC . . o ottt et e e e e e e e e e 167
END .ottt 170
ERASE . . oo ittt e 171
FOR~TO~STEP/NEXT .ottt ettt e 172
GET .ot 177
GOSUB/RETURN . ..ttt et e e i 180
GOTO oottt e 184
IF~THEN~ELSE ... ..o 186
INPUT o e 189
LET &t 195
LOCATE .ottt e 196
POKE . . oottt 197
PRINT/LPRINT . .o et e 198
PUT o 203
READ/DATA/RESTORE ... ..ottt 205
REM o 209
STOP 210
TRON/TROFF .ottt e e 212



CONTENTS

43

4.4

4-5

NUMERICAL FUNCTIONS ... o 214
SIN 214
COS . ot e 217
TAN 218
ASN, ACS, ATN . .ottt e e 219
HYPSIN/HYPCOS/HYPTAN . ..\ttt e e 221
HYPASN/HYPACS/HYPATN . . . .t 221
SQR . L 222
LOG, LGT e e e e 223
EXP oot 226
ABS . . 228
INT e 230
FRAC oo ittt et e e e e e e e e e e e 232
SGN . . 234
ROUND . .ottt e e e e e e 236
Pl o, 238
RND oottt 239
DEG .ottt 241
PEEK . oottt 242
CHARACTER FUNCTIONS ... ... . . 243
ASC . e 243
CHRS . o ettt e e 245
VAL o e 247
STRE . ot e 250
LEFT S o ettt e 252
RIGHT S .« ottt e e e e 253
MIDS . .ttt 254
LEN . ot 256
INKEYS .« oottt e e e e 257
DM . ottt 259
HEXS . o ettt e 260
DISPLAY FUNCTIONS ... ... . i 261
TAB o e 261
USING . .ottt e e e e 263
POINT oo 266



CONTENTS

4-6  STATISTICAL COMMANDS/FUNCTIONS ............ 268
ST AT e 268
STATCLEAR .. . e 269
STAT LIST/STAT LLIST .. ... e 269
CNT . e 270
COR o e 270
SUMX/SUMY/SUMX2/SUMY2/SUMXY . ................. 271
MEANX/MEANY . .. e 272
SDX/SDY/SDXN/SDYN . .. .. i 273
EOX/EOY . ot e 274
LRA/LRB . . o e 274

4-7 OTHER ..ttt e e 275
&H e 275

CHAPTERD PROGRAM LIBRARY
STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYINGPRICES ........ ... 278
TELEPHONE DIRECTORY . ..o it i eie 287
CROSS TOT AL .t e e e e e 294
GRAPH MAKING PROGRAM . . ... i 303
CHAPTER©® REFERENCE MATERIAL
6-1 PB-770 COMMAND TABLE ........ ... .. ... 312
62 ERRORMESSAGETABLE ........... ... ... ....... 323
6-3 CHARACTERCODETABLE ..................... 327
SPECIFICATIONS . .. e e e e s 328
EPILOGUE . ... e e e e e e 336



OUTLINE

The many features of the PB-770 personal computer present an interest-
ing challenge to the beginner, but there is no instant route to total under-
standing of its varied uses.

The step-by-step approach is by far the best path to familiarity with each
function, and it is usually found that computing skill is gained in direct
proportion to time spent on the keys.

So this manual is laid out to introduce the personal computer in an
easy way by providing various practice programs in BASIC while training
you in actual key operation.

Of primary importance is learning the correct handling of the PB-770.
Chapter 1 lays out its features and basic usage procedures. Chapter 2
covers the functions of each key and the display screen preparatory to
learning BASIC.

Fundamentally, a computer stores and computes. Chapter 3 sets out to
explain how a BASIC program can be prepared to store volumes of data
in the PB-770 by an “Array Programming’’ method for recall whenever
required. It also outlines for the beginner the use of graphic program-
ming on the large display of the PB-770 and how to make use of the
operational plotter-printer with cassette interface.

Chapter 4 is for the user who has already mastered BASIC. It explains in
detail how to use many of the commands and functions of the PB-770.
We do not recommend that the beginner learns all commands from this
chapter in series. Only 10 BASIC commands are necessary to form a
good structural knowledge.

Chapter 5 gives representative programs for use with the PB-770. They are
practical, easy to apply, and may be rearranged for specific applications.






\ cHAPTER 1

GENERAL
GUIDE




11 PRIOR TO OPERATION

The PB-770 is a product of CASIO’s strict testing process, high level
electronics technology, and strict quality control.

To ensure long life and trouble-free operation, please observe the follow-
ing precautions.

s I[IMPORTANT

® This computer is constructed of precision electronic components.
Never attempt disassembly and/or maintenance. Special care should
also be taken to avoid damage by bending or dropping. Do not carry
the computer in your hip pocket.

® Use only the optional FA-10 plotter-printer with cassette interface,
FA-11 plotter-printer with standard cassette tape recorder and cassette
interface, or FA-4 printer interface (CENTRONICS standard) with
cassette interface. Never connect any other peripheral equipment to
the connector of this unit.

® Avoid temperature extremes. Do not store this unit in an automobile,
near a heater, or any other location where it may be exposed to high
temperatures. Also avoid use and/or storage in areas subject to high
humidity and dust. Extremely low temperatures can slow display
response or cause the display to cease operating. Normal operation
will return when the temperature is brought back to normal.

® Clean the unit by wiping its surface with a soft, dry cloth or a cloth
dampened with a neutral detergent. Never use such liquids as thinner
or benzine.

® Before assuming malfunction, first check the power supply and con-
firm that there are no programming errors.

® Should service be required, contact your nearest dealer.

12



1-2 SYSTEM CONFIGURATION AND

CONNECTIONS

FA-11: Plotter-printer with standard cassette tape recorder and cassette
interface
FA-10: Plotter-printer with cassette interface

CM-1: Microcassette tape recorder

FA-4: Printer interface (CENTRONICS standard) with cassette interface
OR-8: RAM expansion pack (8K bytes)

® Connecting to another PB-770 (Unit-to-unit programs/data transference)

PB-770 <—

FA-10 FA-10
FA-11 — FA-11 —| PB-770
FA-4 FA-4
® Connectingan FA-11
PB-770 FA-11
[y
OR-8| |OR-8| |OR-8 Cassette
tape
recorder
® Connecting an FA-10
PB-770 FA-10
A
OR-8| |OR-8| [OR-8 Cassette
CM-1 tape
recorder

13



CHAPTER 1

GENERAL GUIDE

® Connecting an FA-4

Standard paper

printer

Plotter-printer

PB-770

Y

x

: CENTRONICS cable ;

...............................

FA-4

OR-8

OR-8

OR-8

CM-1

Cassette
tape
recorder

14




1-3 BATTERY MAINTENANCE

Hl Battery Loading

Turn the power of the PB-770 OFF. Turn
the computer over and slide open the
battery compartment lid (Fig. 1).

Load four AA size batteries. Batteries may
burst if not installed correctly. Always
ensure that the polarities of the batteries
are correct. Load the batteries so that their
minus (—) poles are contacting the springs
located in the battery compartment (Fig. 2).
Mixing old and new batteries will consider-
ably shorten overall battery life. Therefore,
always load or replace a full set of new
batteries.

Battery leakage can damage the unit and
cause malfunction. Always remove batteries
when the unit is not used for extended
periods.

B Battery Replacement

When the buzzer sound produced by the
BEEP command weakens or when the
display becomes blank, replace the bat-
teries with new ones. (For battery specifi-
cations, see page 329.)

B Power Source Configuration

Since the PB-770 power source is divided
into a main power source and a sub power
source for RAM backup (Fig. 3), programs
or data in the mainframe are not lost during
main power source or sub power source
battery replacement. Programs or data are
only lost when the main and sub power
sources are removed at the same time. RAM backup battery

* In order to prevent the chance of malfunction due to battery leakage,
be sure to replace the main batteries and RAM backup battery every 2
years regardless of how much they are used.

* With the main batteries removed, the sub battery protects RAM for
approx. 4 months when RAM capacity is standard 8K bytes (approx.
1 month when RAM capacity is expanded to 32K bytes).

15



CHAPTER 1 GENERAL GUIDE

* When both the main batteries and the RAM backup battery are re-
placed, be sure to enter NEW ALL &) after replacing batteries.

* Keep batteries away from children. If swallowed, contact a physician
immediately.

H Auto Power Off

Power is automatically switched off approximately 6 minutes after the
last key operation (except during program execution) to conserve power.
Power can be restored by pressing the key or turning the power
switch OFF and then ON again.

B Low-voltage Detection Feature

The Low-voltage Detection feature of the PB-770 protects RAM contents
when the voltage of the main batteries drops below a certain level.

When the voltage decreases, the whole display becomes blank or the dis-
play during program execution blinks, and the PB-770 is no longer oper-
able. The batteries must then be immediately replaced. RAM contents
will be altered by switching the unit ON with dead batteries installed.

16



1-4 RAM EXPANSION PACK (OPTIONAL)

Fig. 1 Turn power OFF, The basic unexpanded RAM capacity of
the PB-770 is 8K bytes. The RAM capacity
can be expanded up to a maximum of 32K
bytes by installing optional OR-8 RAM
expansion packs.

One RAM expansion pack provides 8K

bytes. Expansion packs are installed by the

following procedure.

S (1) Turn off the power of the PB-770.

e —a (2) Turn over the PB-770 and remove the

) RAM box cover by pressing the two

Insert the RAM Expansion catches.

Pack as shown above. (3) Holding the sides of the OR-8 RAM ex-
pansion pack, insert it into the far right
position of the unit (Fig. 1).
Since RAM is very sensitive to static

Fig. 2 Slide the holder in the electricity, be careful not to touch the

direction of the arrow. terminals of the OR-8.

(4) Lightly press the holder and slide it
into a locked position (Fig. 2).

(5) Install the required number of RAM ex-
pansion packs. Then replace the RAM
box cover and turn the power of the
PB-770 ON.

(6) Enter NEW ALL @) . Then confirm
%3] RAM capacity by entering @m '

(7) Install the RAM Expansion Packs in the
sequence of 1—2—3 (Fig. 3).
If a RAM Expansion Pack is installed in
position 2 skipping position 1, correct
functions cannot be performed.

Fig. 3 RAM Expansion Pack
insertion sequence.

-

RAM3 RAM 2 RAM1

17



1-5 NOMENCLATURE AND OPERATION

e Display contrast control . .. Adjust so the display can be easily read.

e Alphabetkeys .......... Used to display upper-case letters. When
the alphabet keys are pressed while hold-
ing down the key, lower-case letters
are displayed.

Commands or symbols printed above
each key can be displayed by pressing
the alphabet keys while holding down
the key (one key commands).
Functions printed below each key can be
displayed by pressing the alphabet keys
while holding down the (F) key (one key
functions).

Example:
SYSTEM - - - SHIFT mode

- - DIRECT mode
INKEYS ... FUNCTION mode
* Use the CHR$ function for symbols and characters which cannot be
input directly by pressing a key. (See page 245.)
e Returnkey ( &) ...... Used to perform BASIC command or
program input and output and to execute
data input and output.

e Enter key ( | B Used to execute an instruction during
manual calculations.

Example: [MAERFM@ -3

® See '‘2-5 Editing and Special Key Functions” in Chapter 2 for the
detailed use of each key.

Display FA-10, FA-11 or FA-4 connector
|

(Ll power switch
Display contrast ___
control
Function key —- (] () () (1 (=1 () ) (&) (1 =) EAIENENIEY
W (B /O M@ e EENC S
CAPS key _| ) () (8] (00 (F) (8] (RO (0 (K0 (DD M@ E) >
,@ (6] (V] (8] (N) (M, (%) | J
1
[ | | [
Shift key Alphabet keys Return key Enter key

18



1-6 TEST OPERATION

This is a demonstration program to show the functions of the PB-770. If
you have trouble inputting the program correctly, refer to Chapters 2
and 3.
With this program you will be able to see various functions of the display
screen, the BEEP command and the execution speed of graphic com-
mands.

10 CLS
20 LOCATE 3, 1:PRINT "PB-770 TESTING"
30 FOR A=31 TO B8 STEP -1
40 DRAWCB,A>-(153,A)>
50 NEXT A
60 LOCATE 55 1:PRINT "“BEEP SOUND"
70 FOR A=0 T0 3
80 BEEP 1:BEEP 1:BEEP O
90 NEXT A
188 CLS
118 FOR A=33 TO 255
120 PRINT CHR$(AD;
138 NEXT A
149 FOR A=0 TO 20
150 NEXT A
168 CLS
178 FOR A=1 TO 16
180 DRAUWCA+2,16-A)-(AX3516-A>-(AX3, 15+
A>-C(A+2, 15+A-(A+2, 16-A)
198 NEXT A
200 FOR A= TO 200
210 NEXT A

19






\ CHAPTER 2

KEY OPERATION
AND
DISPLAY




2-1 KEY FUNCTIONS IN DIRECT MODE

When a key entry is made in direct mode, the character or function
inscribed on the key is input.

@-=

&

), ®, 4, 0,

-3

=, ®,

EEEEOE

©

BOEEDE

Upper-case alphabetic characters
Space (blank)
(2], ) Symbols

Decimal point

Arithmetic symbols

Display clear

Character delete

Break (execution halt)

Manual calculation execution
Program input and execution
Cursor movement (left, right)
SHIFT mode designation
CAPS mode designation
FUNCTION mode designation
Answer key (Most recent calculation result)

B Number of characters in one statement

A maximum of 79 characters can be entered in a calculation formula
during manual calculation or in one line during BASIC programming.

Key Functions In Direct Mode

DN@OFF

ED)

OO0 =E O E & @HDEEGE
(0 W () (A (M (D () (0 (@) (&) HMEEE
= (A) (3] () (F) (8) (M) (D (K (D) OEEM®
G (2 00 (8] V) (8] () (W) (%) (2] ] (o)

22



2-2 KEY FUNCTIONS IN SHIFT MODE

When the key is held down and another key is pressed, the brown
character, symbol, etc. printed above each key is input.
26 different one-key commands are provided.

Symbols
Character, symbol insertion
Program area designation
Previous line display in the EDIT mode (see page 134.)
Cursor movement (up, down)
Cursor movement (to the beginning of a statement)

Recall function

Key Functions In Shift Mode

UNﬁUFF

B )

CEHEEE M E 0 (7] (Fe) (Pe) (2]
) () () () () [ () ) e =) (P4) (PS) (Pe) (L]
() ) ) (o] () (0] o) ) [ () (F1) (P2] (Fa) (~]

2-3 CAPS MODE

Lower-case letters are input by holding down the key and pressing
another key.

onf[_ ||orF

OO E O E ) =) @ EEIGE]

[0 0 (2] 0 08 00 () 00 () (8 = EE]
) (0 (] ) 0 @ 0 D 00 O EEE]
C O E O E) e ) ) 6= (2] [ (eures ]




2-4 KEY FUNCTIONS IN FUNCTION MODE

When the (F Jkey is held down and another key is pressed, the respective
function noted below each key is input.

UN@IUFF

STOP
(F) BN ) ) (6N (608) (6T (&) () (o) @) E)E)
(4 (3] (&) ()
) 60 =) (=5) (o) (590) () () ) () WEEM
C s ) ) ) 65 6= ) (50) (o] (-] (evren ]

2-5 EDITING AND SPECIAL KEY FUNCTIONS

(Mg ...,

2) (e .....

INS

(3)@Eey .....

(SPACE) Blank entry in all key modes.

(Clear screen/Home) Clears the display and moves the
cursor to the top left of the display.

G4 @) only moves the cursor to the beginning of a
statement while the display remains as it is.

(Delete/Insert) Deletes the character or symbol at the
cursor position, and shifts the characters or symbols at the
right of the cursor to the left.

Gur) (ns)shifts the characters or symbols at the right of the
cursor to the right and inserts a blank.

A repeat function allows the continuous deletion of cha-
racters or insertion of spaces when or B (K] js held
down.

(Break) Suspends calculation and program execution. Also
used to turn the power ON when auto power off has been
activated.

. Moves the cursor left, right, up, down. The repeat function

is available only for left, right movement.

(Enter) Executes manual calculation. During key input
wait in an INPUT statement, functions as &]. Assignment
statements, commands, and statements cannot be executed
with

24



STOP
) RECALL

(7

(10) & . .

(1) @y . -

(12) 2. ..

(13) &) ...

2-5 EDITING AND SPECIAL KEY FUNCTIONS

Stores the result of a previously executed manual calcula-
tion. Also stores the numerical value output by a PRINT or
LPRINT statement.

Example: 3.4%5 -> 17

58% 3 - ~0.4
Pressing activates a recall function that displays the
last calculation formula executed using the key, the
last program statement stored using the @] key, etc.
Example: 100 % 5 - 500

~100 % 5
sT0P

Pressing will suspend the execution of a program.
Execution can be resumed using the CONT command .

(Return/Line back) Inputs programs and executes com-
mands. Manual calculations cannot be executed using this
key. The previous line can be displayed in the EDIT
mode (see page 134) by

. ... Specifies a program area and executes the
program in the specified area from the first line.

. (Shift) The shift mode is specified by holding down this

key. The unit automatically returns to the direct mode
when this key is released.

(Capital shift) The CAPS mode is specified by holding
down this key. The unit automatically returns to the direct
mode when this key is released.

(Function) The function mode is specified by holding
down this key. The unit automatically returns to the direct
mode when this key is released.

The line in which an error occurred will be displayed for
correction by pressing this key immediately after the error
is generated during program execution.

25



2-5-1 KEY FUNCTIONS IN KANA MODE

Japanese or modded European PB-770s only

When Kana mode is active after pressing the key, the respective
symbol noted below each key is input. Note that Kana mode differs

from other modes like CAPS in that it stays active until the key
is pressed again.

Key Functions In Kana Mode

~

STOP
RECALL

L MO E@EIE]

\

OEEEEEoEHEEEE E)E)IE=
OO TEHEEE ) E®)
(OEEEMEE E (v) (=) (] (=]

(=) (] (evren
J

When Kana mode is active and the key is pressed in

combination with one of the keys below, the respective symbol

shown in the illustration below is displayed.

Key Functions In Kana+SHIFT Mode

on[TJorr

(ead (e8] f==) (3]

DoOMEOeoEEHEEEE EJEIE
x3]r3xals 5l sli sls i mlimin @GO
(DO @) @) m) (=) =) (=] (=1
e () (D) (D) (D) (O (1D (20 9)

25a



2-6 CALCULATION FUNCTIONS

M Calculation Precision and Functions

All internal calculations are performed with a 12 digit mantissa (+ 2 digit
exponent). Since decimal base operation is used, high precision calcula-
tions can be performed.

Manual calculations are executed with the key.

Calculation results are displayed with a 10 digit mantissa (+ 2 digit ex-
ponent). In this case, the 11th digit of the mantissa is rounded off.

B Operator Functions

A Power

+, - Addition, Subtraction

X, / Multiplication, division

MOD Remainder calculation (If the numerical value includes a frac-

tion, the fraction is discarded in this operation.)

The calculation range is as follows.

(1) Division by 0 causes an MA error.

(2) When overflow occurs (i.e. when a result exceeds the calculation
range), an OV error is generated.

(3) Power range

0NO MA error
(tx)A0——1

ONANy————0
0N (—y)——MA error
(=x) N (xy)——Possible only when y is an integer.

Otherwise, an MA error is generated.
* Wherex >0,y > 0.

B Calculation Priority

Calculations are executed in the following sequence.
. Elements in parentheses

. Functions

. Powers ()

. Plus (+) and minus (—) signs

X,/

.MOD

A

NOoOn A WN =

26



2-6 CALCULATION FUNCTI/ONS

Calculation

Formats

1.

N O 0O » W N

Examples
1.

© ® N O g » 0N

N i G
S wWw N - o

X+Y
2

X2+ 2 XY +Yve2
_Y2

(-Y)?

(X)?

X

X

Remainder of ¢

<

0.5MN0
-0.57N0
(-0.5)"No
0.5N2
0.5N-2
(—0.5)N-2
0.570.5
(-0.5)™0.5
27N-0.5
(-2)N-05
19 MOD 6
-10 MOD 6
1@ MOD-6
-10MOD-6

—> (X+Y)/2

—> XN2+2%kxkY+YN2
— —YN2

— (-Y)N2

— XNYN2

—> XN (YN2)

—> X MOD Y

—> 0.7071067812
—> MA error
—> 0.7071067812

—> MA error



CHAPTER 2 KEY OPERATION AND DISPLAY

M Relational Operators
Relational operators can only be used in an |F statement (see page 186).

= Equal

<>,>< Notequal

< Smaller than

> Larger than

== >= Either larger than or equal to.
=<, <= Either smaller than or equal to.

Examples: A+B < > 0... The result of A + B does not equal 0.
A$< > "Y' ... The content of A$ does not equal “'Y".
A$ = CHR$(84) + CHR$(79) + CHR$(77) ... A$ equals “TOM"".
CHR$(67)>CHRS$(N) ... CHRS$(67), which is C, is larger than CHRS$(N)
in the Character Code Table (page 327).

B Operations Using Variables
The contents of variables can be confirmed with the [EneR] key.

Example: A (ENTERR] >0

When a numerical value is entered in a variable, the contents of the vari-
able are as follows.

Single-precision:  Everyting from the 13th digit of the mantissa to the
right is discarded (12 digits). Single-precision is the
normal calculation precision.

Half-precision: Everything from the 6th digit of the mantissa to the
right is discared (5 digits). Half-precision is 5 digit
numerical values realized by specifying an array vari-
able (!). It can only be specified in an array variable.
(See page 70).

Half-precision computation

Storage of a half-precision value requires only 4 bytes as opposed to the
8 bytes needed for a single precision value. Except for engineering or
scientific applications, 5 digits are usually sufficient for most computa-
tions. If computation results concerning such data as test results, percen-
tages, product numbers, prices and quantities can be kept within 5 digits,
theamount of RAM area required for data storage is halved and memory
space is conserved.

28



2-7 VARIABLES

B Kinds of Variables
The PB-770 employs the following types of variables.

(1) Numerical variables
Numerical fixed variables (up to 12 digits).
Numerical registered variables (up to 12 digits).
Numerical array variables (Half-precision numerical array: up to 5
digits. Single-precision numerical array: up to 12 digits).
* The number of digits shown above is the number of internal calcula-
tion digits.
(2) Character variables
Character fixed variables (up to 7 characters).
Character registered variables (up to 16 characters).
Character array variables (String length can be specified from 1 to 79

characters. When no length is specified a default value of 16 is auto-
matically used.).

Example:
DIM A$(9,9)....... Each character string can be 1 to 16 characters
long.
DIM A$(9, 9)%50. . . .Each character string can be 1 to 50 characters
long.

BMFixed Variables (A—2Z, A$—Z$)

Memory where numerical values or characters are stored has 26 kinds of
Fixed Variables which are A—Z or A$—Z$. Numerical fixed variables and
character fixed variables with identical names cannot be used together.

If an attempt is made to use identical variable names, a UV error will
occur.

Incorrect Usage: 10 PRINT A; A$ — UV error

29



CHAPTER 2 KEY OPERATION AND DISPLAY

M Registered Variables

In addition to fixed variables, variable names with two characters that
consist of either 2 upper-case alphabetical characters or an upper-case
alphabetical character and a number, can be used. If a variable name is
defined with three characters or more, an SN error will occur during
execution.

Examples: AB, X1,Y1,X2,Y2,AZ%$,AA%$,B1%,Z29%

The beginning of a variable name must be an upper-case alphabetical
character.

Reserved words (IF, TO, PI, etc.) cannot be used as variable names.

A 12-digit mantissa + and 2-digit exponent can be stored in a numerical
registered variable (AB, X1, etc.).

Up to 16 characters can be stored in a character registered variable.

40 registered variables including array variable names can be used. If
an attempt is made to use more than 40 variables, a VA error will
occur that will suspend execution. At this time, the variable names
should be cleared using the CLEAR or ERASE command.

A registered variable name can be recalled by executing LISTV. A
numerical registered variable uses 8 bytes and a character registered
variable uses 17 bytes.

30



2-8 DISPLAY SCREEN

H Character Coordinates

Twenty characters horizontally and four character lines vertically fit in
the display window (LCD). Character locations are expressed by a
LOCATE statement with the following coordinates.

X 20 characters

0.0 [ <] (19.0)
4 lines
y
0,3) | -] [-] (19,3)
LOCATE(X,Y) ... See LOCATE.

Based on the coordinates mentioned above, 222 characters in the charac-
ter code table (see page 327) can be displayed.

B Graphic Coordinates

Dots can be located on the display based on the coordinates shown
below. Dot locations are expressed by a DRAW or DRAWC statement
which allows dots and straight lines to be drawn or erased.

x 160 dots
(0, 0) (159, 0)
y
32 dots
(0, 31) (159, 31)
DRAW (X, Y) ..o See DRAW, DRAWC.
Whether a dot is lit or not can be confirmed using the POINT function.
POINT (X,Y) ..ot See POINT.

31



2-9 NUMBER OF BYTES USED FOR

VARIABLES

The remaining RAM capacity is reduced each time data are assigned to a
variable (except fixed variables) during program execution. The number
of bytes used for each type of variable is shown in the table below. Fixed
variables from A through Z store data separate from the RAM area so
they have no effect on the RAM capacity.

Registered Variables

Array Variables

E —— - —
| . | Number of |
. Variable Bytes Used |
' Numerical j
' variable 8 .
|

| Character i
‘ variable 17
‘ |
| I

32

. NJ;ber of
Variable Bytes Used
Numerical -

variable 4
(Half-precision) |

. N _
Numerical
variable 8
(Single-
precision)
Character
variable 17
(Fixed-length)
Character
variable 2—80
(Defined- (1—=79 characters)
length) '

i
i
|
|
|
-



\ CHAPTER 9

"BASIC"
REFERENCE




3-1 INTRODUCTION TO BASIC

No doubt you have probably heard the word BASIC used at one time or
another. It stands for ‘‘Beginner’s All-purpose Symbolic Instruction
Code’’, and it truly is one of the most basic of computer languages.

The beauty of this language is that it allows sophisticated programs to be
produced using simple English commands that resemble everyday conver-
sation.

BASIC was developed at a U.S. university in 1964 for use on a large,
main frame computer. Since then, however, it has grown in popularity
and is now probably one of the most commonly used computer l[anguages.
In this chapter we will learn some of the fundamentals of BASIC that will
allow you to eventually develop and write programs of your very own,

34



3-2 USING THE KEYS

Although the PB-770 has a large data processing capacity and can per-
form complicated numerical calculations, it can also be used to perform
manual calculations without using programs.

To help us get used to the PB-770, let’s start with a very simple operation.
The following is displayed after power is switched ON.

Ready PQ (This means that the program area is specified to No. 0.)

The numerical keys (ten keys) on the right side of the keyboard are
mainly used when the PB-770 is employed as a calculator. X] , (], and
(=) are not included with the ten keys as with a standard calculator.
Although (3] is located within the set of main keys it cannot be used as
the (] key on a standard calculator.

The (¥) and (4] keys are used for (X) and (] respectively, while the R key
functions as the (=) key.

Let’s try 1+2. When you enter (J (¥ (2] , is the following displayed?

~
Ready PO

1+2_
L Cursor

If you make a mistake, move the Cursor to the location of the mistake

using the (& and keys and input the correct value.
Next, when you press the e key, the answerwill be displayed as follows.




CHAPTER 3 “BASIC” REFERENCE

Besides the four basic arithmetic functions, the PB-770 is also capable of
such operations as powers, trigonometric functions, inverse trigonometric
functions and logarithmic functions.

[Numerical Expression] [Input Format]

5X6+2 » 5%6/2

6.5° =» 6572

SIN,S@;:NCS;PW = (SIN30Q + COS 60)/ TAN 45

36



3-3 VARIABLES AND ASSIGNMENT

Now let’s try another calculation.
500000 X (1 +0.07)12, 800000 X (1 + 0.07)°

These expressions compound interest over 10 years and add it to the
principals. What is the simplest way to perform these two calculations?
Once a calculation expression is input, it is partially available for repeat
use.

Therefore,

~ Enter A =(1+ 0.07)™10 &) and input the previous two ex-
pressions as

A % 500000 (ENTER), A % 800000 [ENTER]

and the calculation becomes easier to perform.

The value of (1 + 0.07)'? is stored in A. This A is called a variable in
a program.

To assign numerical value to variable A, the following operation is
performed.

A=176 &) (Assign 176 to A)
(Left side) (Right Side)

Assignment is made to store the right side in the left side, so 176 is

assigned to A in this example. The assignment instruction is “=". To

confirm that 176 is assigned to A, enter A which should display the
contents of variable A. Is 176 displayed?

This point is very important in understanding BASIC.

“=7is the assignment instruction and does not mean equal as used in
mathematics (except in a |F statement). For example, enter

A=A+1&

to assign the value of A + 1 to A. Assuming that 176 is stored in variable
A. After the above expression is executed by the computer, 177 is assign-
ed to variable A. Enter A (eve]to confirm this,

Is the following displayed?

177

— (Cursor)

37



CHAPTER 3 “BASIC” REFERENCE

m (eNTeR) and @

[t is also important to understand the difference between the i) and &)
keys.It should be noted that the @]key was used to input A=176 and the
enter] key was used to display the value of A in the previous operations.

The (1R key is used the same as the keys on a standard calculator for dis-
playing an answer. This is called manual calculation.
The & (Return)key, on the other hand, is used to execute the com-

mands of aBASIC program.For example, it is used to input a program, to
correct a certain part of a program, or to execute aBASIC command.

38



3-4 USING VARIABLES

An alphabetical character from A to Z or two characters (alphabetical
character + one character) such as AA, and N1 are used as variable
names. Variables with numerical values assigned as in the previous
section can be freely used in calculation expressions.

Now, let’s practice. When you enter

A=36 &
B=12 &

36 is assigned to A, and 12 is assigned to B. Next, enter
A+B

since is used ‘“‘to display an answer’ in a manual calculation. If 48
is displayed, perform the next step.

A—B > 24
A% B - 432
(4+A) % LOG B — 99.39626599

Mastering the use of variables results in a high degree of versatility. Soon,
however, you will realize that the simple examples shown above are
extremely limited. That is what brings us to programming. Actual pro-
gramming is not very difficult at all if you can understand how variables
are used.

39



3-5 PROGRAM ENTRY

First of all, let’s look at the proper procedure for inputting a program. A
look at the keyboard of the PB-770 shows that the alphabetical keys are
laid out the same as on a standard typewriter keyboard. Now, perform
the following inputs.

@ @ —> Specifies program area PQ.
MNE W @] —> Erases program stored in PQ.

—> Clears screen.

[Program] [Key Operation]
CLEAR 5 indicates pressing
10 CLEAR @ two keys simultaneously.
20 A=A+1 EEEEEHDE

30 LOCATE 7,2 @EOBEENEHDE &
40 PRINT A @@RPHE
50 GOTO 20 GEEMBEE® S

Enter @® @™ @] or 6@ & . If correct entries were made, numerical
characters are displayed at the center of the screen at a high speed:
1,2,3 ...

If “SN error PO — line No.” is displayed to indicate an entry error,
correct (debug) the specified line as follows.

Line No. @&

The specified line is displayed when you perform this operation. Move
the cursor to the point to be corrected, perform the correct input
and press the @] key. The next line will be displayed, and, if no correc-
tion is required, press the key. Then enter ® UM &) again. It
should be noted that the EDIT mode is used for program corrections.

40



3-5 PROGRAM ENTRY

— ® Program Areas

The PB-770 contains a total of 10 “program areas’” numbered from PO
through P9. Each of the program areas is independent, so up to10
programs can be individually stored in the unit, recalled when
needed and executed without affecting programs in the other
pro-gram areas.

When the power of the PB-770 is turned ON, “Ready P0” appears on
the display to indicate that the specified program area is PO. The ™ key
can be pressed at any time to display the currently specified
program area. The following operations are used to change the
program area from the one currently specified.

PROG 1@ or & £ 160).

41




3-6 BASIC PROGRAMMING [1]

Now, let’s try an actual BASIC program.

A program that obtains the area of a square as the one shown below is
prepared using the following sequence.

(1) Request input of the length of one side A.

(2) Multiply the entered numerical value by itself.

£3) Display the result.

4) Return to (1). — A ——
10 INPUT A cceeerererenens )
20 B =A%kA  cooeceeeeennn ®
30 PRINT B cceeeeeeeeeenns ®
40 GOTO 1Q -weeereerreeens @

Now, input this program using the following procedure. Be sure to press
the keys correctly.

PowerON.............. Ready PO displayed.

NEWE). ..ovovveenn... @] is an input key located on the right below the
alphabet keys.

10 oA & ........ Press the and Y keys simultaneously.

20 B=AXA @ ..., (®) is located in the ten keys.

30 =8B C‘@ ....... Press the and &) keys simultaneously.

40 @A 510 & ....... Press the and & keys simultaneously.

Next, execute the program using the following procedure.
UM ..... & can also be used.
_—

42



3-6 BASIC PROGRAMMING [1]

After this entry is made, ? is displayed. _ is called a cursor. Now,
enter

8.5 &)

and the next display should appear. If it does not appear, check if
there is a program input mistake with & &) . Be careful not to
make mistakes concerning the difference between @ and O, and 1 and |.

e
RUN
P85..... .. Value of one side is 8.5.
7225. ... .. ... Area is 72.25.
P— (Cursor)........... What is the value of one side ?

After confirming the execution of this program, let’s analyze it.

10 M‘LJIA_
(Make an entry) (to A)
“10” is a line number which indicates the program execution sequence.
It is increased here by 10 for each line (to be explained later). INPUT
means to make an entry, or, in other words, “ ? " is displayed to indicate

that the computer is waiting for an entry. After an entry is made, the
command stores it in a numerical variable.

20B=AX%A ...... Assign the result of A X A to B.

Line 20 computes the area. The entered numerical value is multiplied by
itself to provide the area of a square, and the result is assigned to B.

30 PRINT B
PRINTB
(Display) (B)

Line 30 displays the area. PRINT is used as a ‘“‘display’’ instruction. This
line provides the instruction to display the contents of B.

40 GOTO 10
- T T
(Go) (to line 10)

GOTO is a command that means ‘“‘go to’’ the line with the number that
follows the command.

43



CHAPTER 3 “BASIC” REFERENCE

The basics of the commands (INPUT, PRINT, and GOTO) used in this
program should be understood after this explanation. However, this
program is somewhat imperfect because it does not indicate what the
input for “?”’ should be, or what kind of computation result is provided
when this program is executed. Therefore, let’s add to this program with
the following procedure.

Ready PO displayed.
) Press and (@) keys simultaneously.

After the line 10 is displayed, press (& to move the cursor to the location
of A, thenenter 1 @) B ™ EBMAH@E) .

—=

The modified result is as follows:
10 INPUT “A=""; A

A message with the j LEWhen a message is inserted, a semicolon

characters inside * ( ;) is required before the variable.
is displayed. Be careful not to enter a colon ( : ) by
mistake.

Next, line 20 is displayed. Since this line is not to be changed, press

Line‘ 30 is displayed next. Move the cursor to the location of B, and
enter@@@@@@[@]. The modified result is as follows.

30PRINT 'AREA 7, ; B

\_T_4

Message is displayed inside “ ", B is displayed following message.

——One space.

After this, line 40 is displayed. Since this line is not to be modified,
press &) .
Now, let’s execute the program.

OEO®ME............ é’j can also be used.

Now this program is considerably improved compared with the pre-
vious program. This is because it asks “A=?" and displays “AREA 72.25”
as the computation result.



3-7 BASIC PROGRAMMING (2]

Now let’s look at another program that will help us get better acquainted
with BASIC. In this program, the multiples of a specified value are pro-
duced within the range of @ to 200.

1@ REM MULTIPLE @]- - - - Press the @] key at the end of each line,
20 A=0 &)

30 INPUT "NUMBER";N @)

40 A=A+1 )

50 B=NxA D)

60 IF B>200 THEN 100 &)

7@ PRINT B; &)

88 INPUT " OK";C$ &)

90 GOTO 40 &)

108 END &)

After you finish inputting the program, press and hold down the key
followed by the & key. Then, when you press the @] key, the first
line of the program will be displayed. If there is a mistake in the first line,
move the cursor into position and correct the error.

[11] 10 REM MULTIPLE See page 209.
neM

T
Line number Command Label

A BASIC program consists of line numbers, instructions (program
instructions or part of an instruction), and variables or expressions that
use variables.
Since line 10 is a REM statement, a label is provided to indicate this is a
multiple program. Anything following REM is not executed. Now, press
the @) key.

[2] 20 A=0
T T
Line number  Numerical variable (Fixed variable)

In line 20, a value of 0 is assigned to variable A as the first step of the
program. This is called variable initialization.

45



CHAPTER 3 “BASIC” REFERENCE

Note that until now all lines have been numbered in multiples of 10.
Actually, any line number between 1 and 9999 can be used in the
PB-770. Numbering the lines of a program in multiples of ten makes the
program easier to read and modify.

Line 20 can also be expressed as follows.

20 LET A=0 See page 195.
LET is an optional assignment command.
Now, press ).
(3] §[Q !,NrPUT %’NUMBAER” ’ _w_ See page 189.
Line Input Message Variable
number command statement

Since INPUT is an input command statement, execution is not shifted
to the next line unless the input of a numeral or character is performed
by a key entry. A numeral or character that is entered is assigned to
the variable following the message statement, and execution proceeds to
the next line.

Although the message statement can be omitted, it is used to tell the
operator what kind of data should be input.

When “ ;" is placed after the message statement of INPUT, “? " is
displayed after the message. If ‘| "’ is used, ‘ ? " is not displayed.

Now, press .

[4] 40 A=A+1

Variable A is a counter that keeps track of how many times execution
is performed for each entered value. Variable A is initialized to @ in line
20. The first execution of line 4@ performs A=A+1 (A=0+1), so the value
of Aissetto 1.

When line 40 is executed at this time (A=1), A=A+1 (A=1+1) is perform-
ed and A takes on a value of 2. The value of A will increase by 1 each
time line 40 is executed. No matter what the value of A at the end of the
program, however, it is always set to @ (in line 20) when the program is
executed from the beginning.

[SEE Line 40 Isttime A=0+1 (A=1)
execution: 2ndtime A=1+1 (A=2)
3rdtime A=2+1 (A=3)

Press the &) key.

46



3-7 BASIC PROGRAMMING [2]

[5] 50 B=Nx%A

This is an assignment statement (the same as line 40) which assigns the
value of N % A to numerical variable B. When this line is first executed,
1 has been assigned to A by the execution of line 40. An optional

numerical value has been assigned to N by the execution of INPUT in
line 30.

Therefore, if Nis 17,
B=17 %1

17 is assigned to B.

EF In the following execution of line 50, a value of 2 is
assigned to A the second time,

2ndtime B=17 %2 The multiple of N is continuously
3rdtime B=17%3 assigned to the numerical variable B,

cancelling any previous value of B.

Now let’s look at the next line. Press &)

(6] 60 IF B>200 THEN 100

L Ty, ;
] Line number to which

. . a jump is made.
Conditional expression

——Decision statement

This is a conditional statement that says “If (IF) the value of B is larger
than 200 (B>200), jump to line 100.” In other words, if the value of B
is equal to 200 or less, execution proceeds to the next line without a
jump. When line 50 is repeatedly executed, the value of B becomes 204

after 12 times (17x12), B>200 is realized and a jump (branch) is made
to line 100.

IF expression THEN line number See page 186.

If this expression is realized, the
program jumps to a specified line number.

Now press &) .

47



CHAPTER 3 “BASIC” REFERENCE

(7] 70 PRINT B ; See page 198.

Numerical variable

Screen display command
PRINT is a display command. In this program, this command displays
the contents of numerical variable B on the screen. The semicolon after
B is used to keep everything displayed continuously. Because of this, the
display called for in line 80 will occur directly after B without line
change.

[8] 80 IINPUT] 1“ OK"I ; C$ See page 189.

Character variable

Input command—— Message

The INPUT statement you learned in the section of line 30 is used again
in this line to perform character key input. When line 80 is executed,
“OK?” is displayed as a message statement by which key input of up to
7 characters can be assigned to character variable C$. If numerical vari-
able C is used here, a numerical value is only accepted as key input, and a
character or @]entry results in an SN error.

The function of this line is to temporarily stop the display of the com-
putation result of line 70 using the INPUT statement which waits for
key input. If this line is not provided, many results are repeatedly dis-
played at one time.

Press the @] key.

(9] 90 GOTO 40 See page 184.

Jump command:I L]i

This is a command for an unconditional jump to line 40. Press the @)
key.

[10] 100 END See page 170.

END is a command that terminates the program. END is an essential
command for a program because if a subroutine follows, the subroutine
is also executed. (See page 180 for subroutines.)

END can be inserted in line 60 as follows. If this is done, line 100 is
not required.

60 IF B>200 THEN END

Line number to which a jump is made

48



3-7 BASIC PROGRAMMING [2]

Let’s observe the program flow as shown in the flow chart below.

[ 10 Comment statement | —= REM (Remark) statement
[ i

| 20 Set the counter value to OJ — A =0 (Initialization)
\

Input value to be —« INPUT stat t
30 multiplied UT statemen
- |
| 40 Count | — A=A+
I
| 50 Multiple computation | — B=NXA
YES Program termination
Loop Multiple > 200 ~—= condition
L70 Display multiple I ‘—- Displays the contents of B
— Stops the display with an
ﬁ@ ChecI? display | — INPUT statement
- Returns to following com-
T
[
[ 100 Termination J

Line 90 causes an unconditional jump (jump is always performed) back
to line 40, so the program is continuously executed between these two
lines. This execution is exited to line 100 by the conditional statement in
line 60 when the product of the multiple times the input value exceeds
200.

49



CHAPTER 3 “BASIC” REFERENCE

EXERCISE

= Prepare a program to compute the accumulated sum of a series of
input numerical values.

 Hint |
(1) Clear all variables to make them 0.

%2 Request input of a numerical value.

3) Add the numerical value to the sum of the previous numerical values.
(4) Display the result.

O 10 CLEAR

20 INPUT “DATA =" ;A
30 B=B+A

4Q PRINT “TOTAL =":;B
50 GOTO 20

Explanation

CLEAR in line 1@ is a command that clears all numerical and character
variables. In this case, only variable B would be cleared by B=0. If the
GOTO command in line 50 causes a jump to line 10, the variable becomes
@ and accumulation cannot be performed.

50



3-8 PROGRAM EXECUTION

Now the program that was input has been checked.

Let’s execute this program.

Press the B key and the € key first. Then enter the program execution
command @M &) . If a program is written in the PQ area, _(55
functions the same as RUN .

If program input has been correctly performed, the following will be
displayed.

RUN
NUMBER ?_

The input of a vélue”is requestéd: Perform the following key operation.

17 @)

Then the following will be displayed.

RUN
NUMBER ? 17
170K ?_

The display shows that the minimum multiple of 17 is 17 and confirma-
tion is requested. Press the &) key to display the next multiple.

RUN

NUMBER ? 17
170K?
34 OK 2_

Press the &) key for the next multiple. After this, multiples up to 187
will be displayed by repeating this operation. If you press the &) key
again and the next multiple does not appear, the conditional expression
in line 60 has been fulfilled. Since the multiple exceeds 200, program
execution terminates. To execute the program again, press ® UMW @)
again.

51



CHAPTER 3 “BASIC” REFERENCE

Program Execution Sequence
Further program modification will help NUMBER®? 17
to learn more about the use of various 17 OK®
commands.
First, multiples up to 300 can be obtain- 34 OK?
ed by changing B>200 in line 60 to Bﬂ">r 51 OK?
300. Line 60 can be displayed by ® 68 OK?
60 &) . Move the cursor to the position )
and change 200 to 300. Next, press the 85 OK<?
&) key and key. Then enter (7)) (U) () 102 OK®
&) . 119 OK?
Let’s check how the display is changed o
by changing the PRINT statement in 136 Ok«
line 70. 153 OK<?
Line 70 reads “PRINT B;”. The semi-
colon after B functions to continue the 170 OK?
display as you already know. Now, let’s 187 OK<?
delete the semicolon. Ready PO

& 70 &

Move the cursor to the position at ““;’’ and press the @) key. Note that
“ ” disappears. Press the @) and @ keys and run the program.

The message statement “OK?” will now be displayed under the multiple.
In other words, since ‘‘ ; "’ is gone, the next character is not displayed in
the same line, it is displayed in the next line.

52



3-9 DISPLAY SCREEN CONFIGURATION

Now, let’s learn some techniques of screen display control by chang-
ing line 70 of the program that was prepared in the previous section.

& 70 &

The following display should appear.
70 PRINT B See page 198.

Let’s display variable B together with variable A which is used as the pro-
gram repeat counter.

(1] 70 PRINT A;B; w
Move the cursor to the position of variable B and enter .
Now a 2 character space is provided before B. Enter @@ H =) &0
Don’t forget to finally press @)]. Press B , and then execute the pro-
gram to check the display. Next, make the following modification.

[2] 70 PRINT A,B;

To make the modification, press the key, display line 7@ in the edit
mode and use the cursor keys as outlined above. Finally, press the

key and then run the program again.

The line change is performed by “A, B;".

Let’s make another modification. Press .

(3] 70 PRINT A ; TAB (8) ; B;

After the modification, execute the program.

The TAB (8) function moves the cursor to the position which is speci-
fied by the number inside ( ). Confirm there is a space between the
display of variables A and B. Notice that when 3 numerals are displayed
for variable B, the left side is aligned and the last character is shifted as
shown below.

51 OK<?
68 OK<?
85 OK<?
102 OK<?

OO0 b~

53



CHAPTER 3 “BASIC” REFERENCE

Since this is a display of a multiple, there is no problem here. However,
when a quantity or price is displayed, the right side should be aligned. To
produce this display, the program should be rewritten using the USING
function.

[4] 70 PRINT A; TAB (8); USING “###" ; B;

See page 263 for details on USING. Now, execute the program to check
the display.

The LOCATE command also controls the screen display. Let’s rewrite
line 70 using this command.

(5] 70 CLS : LOCATE 5,2 : PRINT A;B;. .. A line in which two or

more commands are
Command Command Command connected by * : 7 is

called a multistatement.

Don’t forget to press @) after any modification. The display as shown
below.

1 17 OK<e?

The display appears at the center of the screen.
The LOCATE command is used as follows.

LOCATE X, Y
X indicates the column and Y the line where a character is to be
displayed.

See page 196 for details.

54



3-10 REPEAT PROGRAM EXECUTION

A “routine” is a task within a program that needs to be repeated a speci-
fied number of times. For example, we may wish to check a large volume
of data to find a specific character or value. Or maybe we need to
arrange data in some kind of order. Whatever out requirements, we can
have the computer go through all of the present data to compare it
against another value, to compare it with neighboring data, or to rear-
range everything. The commands included in this section are essential
for such applications.

Let’s start with a simple program. Check which program area is empty
before inputting the program.

SHIFT) s(%m [ﬁ] See page 151.

The following display appears after this entry is made.

P YV¥23456789 ANGLE ©
8KB 47208B
Ready PO

The numbers of program areas that have already been used to store pro-
grams or data are replaced with @’s. The example display above shows
that program areas @ and 1 contain programs. The 8KB indicates the
total RAM capacity. The 4720B indicates that there are 4720 bytes of
remaining RAM capacity available for use. Of course, this number would
be higher if RAM expansion packs were being used.

A number from @ through 2 appears after ANGLE to indicate the angle
unit (see page 154). This value does not influence ordinary computations,
and is always @ (DEGREE) when the power of the unit is switched ON.
Ready PO indicates the presently designated program area. In this case, a
program can be written in program area @. Since program areas @ and 1
are already occupied in this example, we would enter PROG, followed
by a value from 2 through 9 and then &) .

Now, input the following program.

10 CLS

20 FOR A=1 TO 20
30 PRINT CHR$(254);
40 NEXT A

55



CHAPTER 3 “BASIC” REFERENCE

Enter the following to display the first line of the program and confirm
correct input.

En B

Specifies the EDIT mode

Advance to the next line by line by pressing ).

After “Ready P@” appears on the display, run the program.
This program displays 20 times continuously.

Now, let’s learn the new commands included in this program.

[1] 10 CLS

CLS is a command that clears the screen and moves the cursor to the
upper left corner. It is used to prepare the screen for the next display.

(2] 20 FOR A=1 TO 20)’

30 PRINT CHR$(254):

40 NEXT A ’

Line 20 and line 40 are actually a single command.

FORA=1TO020 ............ Sequentially assigns a numerical
value from 1 to 20 to variable A.
NEXTA ...t If A <20, 1 isadded to the value

of A and a return is made to FOR.

This is called a FOR-NEXT loop. Let’s follow the execution procedure.

(1) 1is assigned to A.

(2) Execute line 30.

3) NEXT A in line 40 checks if A<20.

4) Since A=1, execution returns to line 20 and 2 is assigned to A.

5) Execute line 30.

6) Check if A<20 in line 40.

(7) Since A=2, execution returns to line 20 and 3 is assigned to A.

(8) When the value of A finally reaches 21, the line following the NEXT
statement is executed. In this example program there is no line after
NEXT, so program execution terminatesand ‘“Ready P@” is displayed.

Now let’s look at line 30 which is repeated 20 times in this program.

56



3-10 REPEAT PROGRAM EXECUTION

[3] 30 PRINT CHR$(254); See page 245.
Dis‘play CHR$' (254)T—same line

All characters and keys are assigned code numbers ranging from @ through
255, and CHR$ (254) is the function that specifies character code num-
ber 254 (). (See table on page 327.)

Since cannot be entered directly by pressing a key, it is specified by
the function CHR$ (254). This function is essential for specifying such
symbols and graphics. “CHR$ (*’ is entered using ®

CHR$ (

EXERCISE

m Prepare a program in which the integers from 1 to a specified number are
continuous displayed using FOR-NEXT.

M Frfor A=1 TO N

NEXT A

g 10 cs

20 INPUT "NUMBER"; N
30 FOR A=1 TO N

40 PRINT A;
50 NEXT A
60 END

57



CHAPTER 3 “BASIC” REFERENCE

Explanation

To provide for the input of an optional numeral in line 20, “NUMBER?”’
is displayed as a message statement. The entered value is assigned to
variable N and the number of repeats is specified in line 30. For example,
if the value 15 is entered, line 40 is executed 15 times.

The variable used by FOR-NEXT is displayed in line 4@. This program
shows that 1 is added to the variable of the FOR-NEXT command each
time the loop is repeated.

58



3-1 SUM TOTAL PROGRAM

The FOR-NEXT loop introduced in the previous section requires some
time getting used to, so let’s try another program.

This time, let’s use program area P4. Use the procedure already outlined
to designate the program area. Enter NEW, then @], and we’re ready to

go.
This program computes the cumulative cost of a series of articles with

different unit prices. Subtotals for each article are also provided. The
total number of different articles is input at the very beginning of the
program.

10 CLEAR

20 INPUT "NUMBER OF ARTICLES":N
30 FOR A=1 TO N

40 INPUT "UNIT PRICE":;B

50 INPUT "QUANTITY";C

60 PRINT "SUBTOTAL";BxC

70 D=D+BxC

80 NEXT A

90 PRINT "TOTAL";TABC(1@)>;"$";D
1860 END

The processing in each line of this program is as follows.

10 Clears all variables (assigns 0 to all variables).
20 Requests input of the number of articles (Assigns the number of
articles to N).

30
Unit price and quantity are requested for the number of times
specified by N. After each input, the subtotal is displayed and is
added to the total.

80

90 Displays the total amount.
100 Termination

59



CHAPTER 3 “BASIC” REFERENCE

Let’s analyze the FOR-NEXT loop from line 30 to line 80 in detail.
The task to be performed in the loop from FOR to NEXT is as follows.

(1) The unit price is input and assigned to variable B.

(2) The quantity is input and assigned to variable C.

(3) The unit price is multiplied by the quantity and the subtotal is
displayed.

(4) The subtotal is added to the cumulative total.

In line 90 of this program, an easy-to-read display can be obtained.

90 PRINT “TOTAL”; TAB(10); “$" ;D

Displays total. Takes 10 Displays $. Displays total
spaces. amount.

Let’s rearrange the program based on a subroutine concept. The funda-
mentals of the subroutine are shown below.

The command used for this procedure is GOSUB-RETURN.

Line 40 to 70 in the previous program are changed to lines 500 to 540,

and GOSUB 500 is inserted in line 40.
Main routine Subroutine
10 o
20 5%q
GOSUB 500 30 510
) ] 40GOSUB
Go to the subroutine at line 500. 50 A 520
530
RETURN 60 540
70 RETURN
Return to the command following GOSUB. 80 L
90
100

Lines 30 to 80 are modified according to the above as follows.

30 FOR A=1 TO N
40 GOSUB 500
50 NEXT A

60



3-11 SUM TOTAL PROGRAM

And now our program looks like this:

10
20
30
40
50
60
%
500

510
520
530
540

Input this

CLEAR
INPUT "NUMBER OF ARTICLES";N
FOR A=1 TO N

GOSUB 500 FOR-NEXT loop. Repeats N times.
NEXT A

PRINT "TOTAL"; TAB(1@); '"$";D

END

PRINT A3 TAB(5); "UNIT PRICE";: INPUT

B

PRINT A TABC(S5Y; "AUANTITY"; : INPUT C  Subroutine
PRINT "SUBTOTAL";BXC:BEEP 1

D=D+BxC

RETURN

program in a new program area. Confirm the difference in

execution between this and the previous program.

61



3-12 CHARACTER VARIABLES

Before getting into the actual storage of large volumes of data, let’s first
have a look at how character data is handled. As has already been men-
tioned, variables are roughly divided into two categories: numerical vari-
ables (such asA,B,C, A1) to which only numerical values can be assigned,
and character variables (such as A$, B$, A1$) to which characters and
symbols can be assigned.

Since numbers as well as symbols and alphabetical characters can be
assigned to character variables, the difference between the two types of
variables may not be clear. It should always be remembered, however,
that a numerical variable expresses a quantity, whereas a numerical value
in a character variable expresses the character only.

For example:
(Numerical value) (Character)
4+3 — 7 tgqn 4 u3zn — 43

As can be seen on the right, the assigned characters are enclosed in quo-
tation marks the same as messages with the INPUT and PRINT com-
mands. The result of adding two characters is a string that contains the
two characters. A numeral treated as a character can be converted to a
numerical value using the VAL function (see page 247).

In the following section we will be discussing the use of character vari-
ables in arrays. Each element of a character array usually holds up to 16
characters, but can be specified to hold up to 79 characters.

62



3-12 CHARACTER VARIABLES

Character arrays are specified as follows.

DIM F$ (50) * 30

i . .
Character variable L L Maximum number of characters per variable
Number of data

10 20 38 406 50 68 78 79
| t | 1 | | ]

F$(8)
F$(1)
Memory area is conserved by speci- F$(2)
fying the maximum number of ?Eiz
characters per variable. When 30 is F:(S;
specified as above, the required (g

)
memory is computed as follows. F$(7)

)

y

50 X (30+1) = 1550 (Bytes)
Number of characters + 1

The less the memory used per variable, the more overall memory space
available. With numerical variables, the selection is between single-
precision and half-precision variables. A half-precision numerical array
requires only half the memory as a single-precision array. This will be
explained in the following section.

63



3-13 WHAT IS A DIMENSION?

The word ‘“dimension” can often be heard when talking about computer
programs. A dimension can be thought of as a kind of container or shelves
as shown in figure (2) below. Data (such as numerical values or charac-
ters) can be stored on these shelves for later retrieval.

In this example, 5 shelves are prepared under 1 variable name. If we store
“Smith” in A$(0), “Johnson” in A$(1) and “Foster” in A$(2), we can
then recall these data by specifying the variable name and control num-
ber. Different data can be included under A$. Without arrays, each piece
of data would require its own variable name as shown in figure (1) below.
This would make it difficult to keep track of data and would result in
inefficient programs.

(1) 1 data item per variable — (2) 1 variable name holds
inefficient numerous data items —
1-dimensional array

AS B [
BS : |
c$ ? AS
DS ;
E£S . |
(Address)

64



3-13 WHAT IS A DIMENSION?

= 1-Dimensional Arrays

The method shown in figure (2) is known as a 1-dimensional array, and
is very handy for inputting large volumes of data. Although only 5
shelves were used for the example, up to 256 (0 — 255) shelves can be
reserved per variable name.

Before an array is used, shelf space must be reserved. Attempting to
place data on a shelf (in memory) without this preparation will result in
an error (UV error).

(3) Directory using 1-dimensional arrays

AS B $ C$
1 | |
Name Address TEL NO.
| | |
1 Name Address TEL NO.
] ] ]
Name Address TEL NO.
I | l
3 Name Address TEL NO.
| | |
4 Name | — Address TEL NO.
{Address)

(4) 2-dimensional array

2 1 2 {Address)
A $ (Horizontal)

0 J | |
| | |

[a%]
{1eotiap) $ v

e [ |

{Address)

\
\

65



CHAPTER 3 “BASIC” REFERENCE

® 2-Dimensional Arrays

Based on what we already know about 1-dimensional arrays, we could
construct a directory using a series of variables. In figure (3), we see that
names are assigned to A$, addresses to B$ and telephone numbers to
C$. To find out a person’s telephone number, for example, we would
input the name and then use the resulting A$ shelf number to find the
right shelves in B$ and C$. A specific shelf can be specified by indicating
the horizontal variable name and the vertical control number.

Another means to accomplish the same result would be to use what is
known as a 2-dimensional array as shown in figure (4). This type of
arrangement allows the vertical and horizontal arrangement of data
under a single variable name. Up to 256 rows and columns (@ — 255) can
be specified, but, due to memory limitations, a 256 x 256 array is impos-
sible because the memory required for a 2-dimensional array is:

Number of vertical addresses x number of horizontal addresses
x number of required memories per address

A 256 x 256 array that allows 16 characters per variable would require:
256 x 256 x (16 + 1) =1114112 bytes
Of course, in this case a memory overflow error would be generated.

66



3-14 NUMERICAL ARRAY VARIABLES

A numerical array is used when storing numerical values on the shelves
described in the preceding section. A variable name (in the case of arrays
called an “array variable’”) such as the A$, B$ and C$ of the previous
section is used. The array variables for numerical and string arrays are
basically the same for control purposes, but data handling and expression
within a program are different.

First let’s prepare a program using a numerical array variable to set up a
1-dimensional array like we saw in the previous section. Since this set of
shelves will hold numerical values, the array variable must be an alpha-
betical character. Let’s call this array “A”’, and create a total of 7 shelves
from @ through 6.

(1) Array variable A configuration and expression

A
1T
1 I a
\eJ

DIM A(6) used to set up shelves

2 | 8
NOTE!

| Seven data items are

3 B numbered from 0
through 6.

4

5

67



CHAPTER 3 “BASIC” REFERENCE

The following is used to prepare shelves 0 through 6 under array variable
A.

Numerical array name

DIM A (6) &

Diménsion 1-dimensional array
command with 7 shelves
(@ through 6)

Specifying the above sets up array A and initializes all arrays in A to @
(empties all of the shelves). If a DD error is generated when a DIM com-
mand is entered, enter CLEAR @) and repeat.

Now let’s store some data on the shelves.

A(B) =—13 &
Address 5 in array A
A(3) =65 &

Now let’s confirm that the data are assigned to the specified shelves.

A (D) —13 displayed
A(3) 65 displayed

The operation outlined above can be included in a program as follows.

5 CLS

10 CLEAR

20 DIM A(6)

30 INPUT "A(5) =";A(S)
4Q INPUT '"A(3)=";A(3)
5@ PRINT A(5):;A(3)
60 END

68



3-14 NUMERICAL ARRAY VARIABLES

® Numerical values assigned to array variables

Certain restrictions exist concerning the numerical values that are assigned
to array variables. The first important thing to remember is that up to a
12-digit mantissa and 2-digit exponent can be assigned to each array vari-
able. Values are displayed, how-

ever, up to 10 digits {rounded).
Internal computations are con-
ducted with 12 digits.

A numerical array as described
above is said to be ‘single- 2 digits
precision”. Often, however, 12
significant digits are not required
for computations and 10 digits are
not necessary for the display.
Therefore, ‘“half-precision” pro-
cessing can be used in which values
are stored only up to 5 digits. As the names imply, the memory space
required for a half-precision data item is one half that necessary for
single-precision data. The difference between single-precision and half-
precision is shown in figure (3).

(2) Array numerical values

(12 digits)

Everything past the 12th digit discarded.

(Display)

Numerical values up to 100 digits long can be expressed by the
PB-770. Even larger digits can be displayed depending upon the
program. Once 10 digits are exceeded, however, values appear on
the display in exponential form.

12345678909 1.234567891 E 10
T —J T
Mantissa Exponent
Rounded

Exponential form represents: a number x 10! In the above
example, the display means: 1.234567891x10"°

69




CHAPTER 3 “BASIC” REFERENCE

(3) Single and half-precision shelf size

Half-precision Single-precision
4 bytes are used 8 bytes are
per shelf. | used per shelf.
—
(Address) (Address)
Numerical value of a Numerical value
5-digit mantissa and of a 12-digit
// 2-digit exponent can mantissa and 2-
be stored. digit exponent
/ can be stored.

Single-precision dimension is expressed as follows.

A(i) ..... Single-precision numerical array

A half-precision dimension is expressed using an exclamation mark
after the variable.

A(i) .....half-precision numerical array

70




3-14 NUMERICAL ARRAY VARIABLES

m Single-precision and half-precision in a 2-dimensional array
The precisions of 2-dimensional arrays can be regarded the same as those
for 1-dimensional arrays. An example is shown below in figure (4).

DIMA!'(i,j) ....... Half-precision
DIMA(i,j) ........ Single-precision

(4) Half and single-precision 2-dimensional arrays

DIM Al (i, ) DIMA(i,])

71



3-15 NUMERICAL ARRAY PROGRAMMING

Let’s prepare a program for a totalization table. Column and row sub-
totals are to be computed, and a grand total is obtained at the end. The

table is 4 x 4, so 16 pieces of data are used.

A-1 A-2 A-3 A-4 Subtotal
0| 25 17 3 67
1 19 20 11 58
2| 32 45 26 55
3| 36 28 29 40
Subtotal

Since numerical data are used, let’s prepare a program with a 1-dimen-
sional numerical array. Let’s select A as the variable name. Now, let’s

prepare the program according to the following flow chart.

Data input of column A-1

2 | Data input of column A-2

3 | Datainput of column A-3

4 | Data input of column A-4

5 | Totalization of row @

6 | Totalization of row 1

7 | Totalization of row 2

10

1

12

13

14

15

72

Totalization of row 3

Totalization of column A-1

Totalization of column A-2

Totalization of column A-3

Totalization of column A-4

Row subtotal display

Column subtotal display

Grand total display




3-15 NUMERICAL ARRAY PROGRAMMING

Let’s prepare a program to input each column of data as shown in 1 to 4
of the flow chart.

10 CLEAR
20 DIM A1(15)

30 FOR 1=0 TO 3
40 INPUT AI!(I) FOR-NEXT loop

50 NEXT 1

In this program data is entered from A!(Q) through A!(3) (column A-1),
but how do you enter data to columns A-2 through A-4 without changing
the variable name? The following shows what we are trying to accomplish.

J Subtotal
AlQ) | AN4) | AlB) | Al(12) B!(0Q)
Al(1) | AUG) [ AN9) | Al13) B!(1)
I | AY2) | Al(6) | Al(10) | Al(14) B!(2)
Al3) | ANT) | Al{11) | Al(15) B!(3)
Subtotal | C1(@) | C!(1) | C!(2) | CU3) D

If we look at the relationship from column to column, we can find the
following pattern.

Al(x) Al(x+4) Al(x+8) A!l(x+12)

Now all we need is a routine that will add 4 to the loop counter each time
we want to move to the next row. This can be accomplished using the
nested loop shown in lines 40 through 90 below.

10 REM INPUT

20 CLEAR

30 DIM A !(15)

40 FOR JU=0 TO 3 —

50 FOR I1=0 TO 3

Data input by
60 PRINT "A=";J+1;"(";I1;")"; |Column [shifting se-
) e
70 INPUT Al(J%4+1) data input| quentially yrom
80 NEXT 1

90 NEXT J —!
73




CHAPTER 3 “BASIC” REFERENCE

Let’s see how this works. The first value of J and | is @. ] will retain the
value of @ for the next three passes of I. Line 60 results in a display of

“A—1 (0)” because both J and | equal @. Line 70 waits for an input for
A! (0) since 0% 4+ 0=0.

On the second pass of |, ] still equals @ but | now equals 1. Therefore, line
60 displays “A—1 (1)” and line 70 waits for an input for A!(1) since
0%4+1=1.

Let’s take a look farther down at A!(14). In this case, J=3 and I=2. Line
60 displays “A—4 (2)” and line 70 waits for an input for A!(14) because
3%4+2=14,

This completes the data input program. Data is sequentially entered with
the display of “A—Column No. (Vertical No.)? ” Data is stored in
array variable A! () in line 70.

Now, let’s prepare a program for the row subtotal.

95 DIM BI(3)
100 FOR 1=0 TO 3

110 FOR J=0 TO 3 Row | plays subtotal by
120 BI(1)=B1(1)+AI(Jk4+1) |Soqguacon| shftogvertically
130 NEXT J

140 PRINT "B—":;1;TAB(S5);B!1(1)

160 INPUT "OK";F$

160 NEXT I _

Data is stored to array variables B!(0)—B!(3) in line 120, and is dis-
played in line 140. To prevent display of the subtotal of B!(0)—B!(3)
from scrolling, the display stops in line 150, and the next display is
made by entering (&].

Now, prepare a program for the column subtotal.

170 DIM CI(3)

180 FOR J=0 TO 3
190 FOR 1=0 TO 3 Computes and dis-
200 CI(J)=CI(J)+AI(J*k 4+ 1)  [Column g port Y

computation shifting hori-

i tally fo
210 NEXT I anddisplay | G0 O

220 PRINT "C—";J; TAB(5); CI(J)
230 INPUT "OK"; F$
240 NEXT J —

74



3-15 NUMERICAL ARRAY PROGRAMMING

This is almost the same as the row subtotal method using nested FOR-
NEXT loop with a different sequence of variables (loop control vari-

ables) | and J.

Now, let’s compute the total.

250
260
270
280
290
300

REM TOTAL

FOR 1=0 TO 3
=D+CI(I)

NEXT 1

PRINT "TOTAL=";D

END

Programming With A 2-Dimensional Array

The handling of each shelf where data is to be stored is complicated and
difficult to understand when a 1-dimensional array is used as previously
explained. Let’s prepare a program using a 2-dimensional array which is
much more convenient for handling column and row data.

(1] Initialization

10 ERASE Al Clears the array of variable A.

280 CLS Clears the screen.

30 N=4 The number of column or row items.

40 DIM A (NN Dimension declaration (The declaration of half-

precision numerical array).

The number of column and row items can be changed by changing the

value of N in line 30.

75



CHAPTER 3 “BASIC” REFERENCE

Data Input J  Row total
59 FOR 1=0 TO N-1 28| 39| 12| 54| 133
J=@ TO N-1
ig ngNT I30="3 73 ! 53| 29| 55| 38| 167
8@ INPUT A!CIs ) 28| 17| 80| 53| 178
99 NEXT J
190 NEXT I 60 | 31| 70| 44| 205

Column| |69 | |16 | 217 | 181 | 683
total

N—1 is used in lines 50 and 6@ because row and column totals are not
required for data input. Note that data are entered in rows and not verti-
cally as with the 1-dimensional array.

Row Subtotal J

118 FOR I=08 TO N-1
1280 FOR J=0 TO N-1

130 A CTHND=A CILNY+AL CT5 I) 1 Stosay of
149 NEXT J
150 NEXT I

Row subtotals are computed four times (when N=4). Manually go
through this routine to confirm that all values of A!( ) are accounted
for.

[4] column Subtotal J

1680 FOR J=0 TO N
1786 FOR I=0 TO N-1

188 A' (N> J)=A! (Ns ID+AI (T, J) | Subtotal of
190 NEXT 1
200 NEXT J

Column subtotals are computed four times (when N=4). Again, manually
go through this routine to confirm that all values of A!( ) are ac-

counted for.
76



3-15 NUMERICAL ARRAY PROGRAMMING

[5] Row Subtotal Display

218 FOR 1=8 TO N-1
228 PRINT A C1sN);
230 NEXT 1 Display of
240 STOP ! this row

The program stops once and confirms each row subtotal. Then, execu-
tion proceeds to the next line after o ) is entered.

[6] Column Subtotal Display

250 FOR J=0 T0 N
260 PRINT A!(Ns J);
270 mert (|| et
280 END

This routine displays the sum of all of the column subtotals. Since the
subtotal of the column at the far right is actually the total of the row
subtotals, the result is a display of the sum of the entire table.

The most difficult point of this program was the double FOR-NEXT
loops (commonly called “nesting”). But after using this technique a few
times, its value will soon become evident. Just remember that the FOR-
NEXT loop automatically increments the value of control variable with
each execution,

77



CHAPTER 3 “BASIC” REFERENCE

Program Execution

When you run the program, “0—0? ” is displayed which requests data
entry. Enter Data @], then data entry for the next row is requested by
(‘0_1 ?)"

When all data input has been performed the row subtotals and “STOP
P@—240” are displayed and the program stops. -
Next, the column subtotals and total are displayed by entering €
@) and the program is terminated. Try several different display formats.

| Control variables

In the routine for the row subtotals, the values of control variables
change as follows.

110 FOR=0 TO N-1 _
-— [ Control variables |

120 FOR [J]=0@ TO N-1 A

130 A! (@ N)=AI{LN) +A!()

| and J are control variables
of the FOR-NEXT loops.
They change from 0 to 3.

When 1 =0,J=0and N =4,
Al (0,4)=A!(0,4) + Al (0, 0).

78



3-16 CHARACTER ARRAY VARIABLES

Characters can also be assigned to 1-dimensional and 2-dimensional
arrays. With numerical array variables, single and half-precision can be
specified for efficient use of memory, as described before. Character
array variables can also be used with the string length specified.

Storing a string that is shorter than 6 characters in an array specified for
more wastes memory. Attempting to store a string that is longer than the
specified array capacity will generate an error. Therefore, it is important
to determine the string length of the array being defined.

The number of characters per character array variable is specified as
follows.

DIM AS$() )k n (1=n<79)

* If % n is omitted, the number of characters
is specified to 16 characters.

16 character spaces

8 character spaces

T T T T T T

0 Up to 16 characters | e
) | 0|ABCDEFGH
2 | 1|1

1= [

fCharacter indication

DIM A$ (3)
T T DIM B$(2) **8
Character array variable 4 shelves (arrays) Number of characters specification
from 0to 3. (from 1 to 79 characters)

* Since *n is omitted, the number of characters is specified as 16 characters.

79



CHAPTER 3 “BASIC” REFERENCE

Let’s enter characters in an array variable. Perform the following opera-
tions.

CLEAR &)}

DIM H$(30)%5 @)
H$ (1) = 'ABCD" &)
H$ (2) = "EF" &)

When you execute these entries, the characters
are stored in the array variable as shown in the g [ [— |
figure on the right.
To recall these, perform the following operations. 1 |AB co

H$ (1) ABCD
H$ (2) EF

301:_

® DIM statement error

Attempting to enter a string that is longer than the size specified by a DIM
statement results in an error.

ST error
At this time, reenter the string keeping it within the defined range.
Attempting to define an array that has the same name as a presently defined
array will also result in an error (DD error). For example, this error would be
generated if the statement

DIM A$(20) were input followed by

DIM A$(30)
When this happens, erase A§( ) using the ERASE command.
ERASEA$ &)

It should be noted, however, that the ERASE and CLEAR commands erase
data.

80



3-16 CHARACTER ARRAY VARIABLES

®  String Array Programming
Exercise

Prepare an array program with 3 arrays in which up to 10 characters can
be stored respectively. Characters are to be entered by character codes.
To stop input in the middle, @ is to be entered. When the entry for 3
arrays has been completed, all characters are displayed.

Since initialization is with up to 10 characters and 3 arrays,

1@ CLEAR
20 DIM N$(2)*x10

The data input routine comes next. Since there are three arrays, prepare
three FOR-NEXT loops and use another loop specified by a GOTO
statement to read 10 characters. Include an INPUT statement in the loop
to read character codes.

The basic configuration of the data input program is as follows.

(1) Set the counter to @ for the number of

characters per variable . . . ............... B=0
(2) Inputacharactercode ................. INPUT N
(3) Add 1 to the counter for the number of
characters ... ............ ... ... . ..., B=B+1
(4) If the counter exceeds 10, input character
codestonextarray. ................... IFB=10 THEN ~
(5) Convert a code number to a character and
storeittoanarray variable . ............. N$(1)=N$(1)+CHRS(N)
(6) Returnto(2) ....................... GOTO ~

The routine for displaying the result comes next. Provide a display of
N$(0)—N$(2) on the same line.

120 FOR I =0 TO 2
110 PRINT NS$(I);"% ;e 0 to 2 is sequentially entered
120 NEXT I tol.

81



CHAPTER 3 “BASIC” REFERENCE

10
20
30
40
45
50
60
/0
80
90
100
110
120
130

CLEAR :CLS

DIM N$(2)>%10

FOR I=0 TO 2:B=0

PRINT "N$C";I5;")>";:INPUT " No.";N
IF N>255 THEN 40

IF N=@ THEN 390

B=B+1: IF B=1@ THEN BEEP :GOTO 380
N$CI)=N$CID>+CHR$IND -

GOTO 40

NEXT 1

FOR I=0 TO 2

PRINT N$CID>;" *;

NEXT I

END

When you execute this program, ‘“N$(_0)_._No.?_" is displayed.
Now enter the character code. The numeral enclosed by parentheses of

“N$(1)” is changed from 0 to 1 to 2 by entering 0 &).
Now, enter the following codes and see what appears.

67 @65 @83 @) 73 @) 79 @0 @67 &)
79 &) 77 @) 80 &) 85 &) 84 @) 69 )
82 @)oo @) 80 @66 @55 @48 &) 48 &) 0 &)

82



3-177 COMBINATION OF STRING
ARRAYS AND NUMERICAL ARRAYS

In most cases when data is processed by preparing a table, a combination
of string and numerical arrays is used. In this case, characters and numer-
ical values must be handled at the same time as one data group.

For example, in regard to a name and score, or the names of articles,
number of articles and an amount, characters and numerical values must
be recalled at the same time.

Let’s prepare a result processing program as an example. First, a 1-dimen-
sional character array to store names is required. Then a 2-dimensional
numerical array is required in which the total score for three subjects
(English, mathematics, and science) corresponding to the name is stored.
The following model can be assumed based on the items mentioned
above.

[} 1 2 3
Q
1
2
45 people 3 /
\ o= : :%ﬁ__:::‘___iﬁ--»_!/
44
45 /
D$ (45) Average score D! (45,3)
0 = English
1 = Mathematics
2 = Science

3 = Total of 3 subjects

The data to be entered is as follows.

Name English tl‘;'lcasthema- Science ::;?L
i 50 60 75
K.K 83 71 70
5.0 60 63 40
Average
score

83




CHAPTER 3 “BASIC” REFERENCE

[1] Name Input

1@ ERASE D$,D!: CLS

20 DIM D$(45)%10,D! (45, 3>
30 1=0

40 INPUT "NAME ";D$CI1)

50 IF D$CI>="END" THEN 80
60 I=I+1:IF I=45 THEN 80
70 GOTO 49

Names are stored in D$(0) to D$(44) and the average score is stored in
D$(45). The execution is exited from the loop by inputting “END”’. Of
course, lines 40 to 70 provide the loop for name input.

Numerical Value Input

The following is a routine that enters numerical value into a 2-dimen-
sional array. Line 90 displays a student’s name in D$(Y), and line 120
inputs the English score in D!(0,0) (when X=0). Then line 130 adds the
score to D!(0,3). D!(Y,3) is the subtotal of the row since only three
subjects are being handled here. The number of elements can be ex-
panded by changing the 3 of D!(Y,3) to “1 + the number of elements”.
X,Y of D!(Y,X) are determined by the frequency of the FOR-NEXT
loop.

FOR Y=0 TO I —1
FOR X=0 TO 2 —
[ INPUT DI(Y, X)
NEXT X —
NEXT Y —

84



3-17 COMBINATION OF STRING ARRAYS
AND NUMERICAL ARRAYS

The basic input format is shown below.

80

90
100
110
120
130
140
150

Average Score For Each Subject

FOR Y= T0 I-1
PRINT D$(Y>
FOR X=8 TQ 2
PRINT X

INPUT " ";D! (Y XD

X Score table

. Mathe- .
English matics Science Total

(0) (1) (2)

D!'CYy3)>=D!(Y5,3>2+D! (Y, XD

NEXT X
NEXT Y

No matter how many names are input (counted by 1), D!(45,X) is speci-
fied to store the average score for each subject. In line 189 the cumula-
tive points for each subject are assigned to D!(45,X). In line 200 the
average is assigned to D, and in line 210 the decimal part of D is rounded
off to one place and then reassigned to D!(45,X). INT is the integer func-
tion in which values below the decimal point are discarded.

This function is used because of characteristics of test result processing.
If used for other purposes, line 210 can be changed.

160 FOR X=8 T0O 3
178 FOR Y=8 T0 I-1

180 D!(45,X>=D"!(45;X>+D! (Y, XD

190 NEXT Y

200 D=D! (45, X)/1

210 D! (45,X )=INT(DXx18t0.5>/10

220 NEXT X

85



CHAPTER 3 “BASIC” REFERENCE

@ Total Score Display For Each Name

The total score for each name is displayed. After you press @)in line
260, the program proceeds to the next name. The total score for a name
is processed by loop control variable Y. Therefore, the total always
corresponds to the proper name.

230 FOR Y=0 T0O I-1

240 PRINT D$CY>;" T=";

250 PRINT D!(Y:3)

260 K$=INKEY$:IF K$="" THEN 260
270 NEXT Y

Average Score Display
The display of the average score for each subject is performed by sequen-

tially displaying data D!(45,X) from X=0 to X=3.
280 FOR X=0 T0O 3
2390 PRINT "AUE.=";
300 PRINT D!(45;X)
310 K$=INKEY$:IF K$="" THEN 310
320 NEXT X
330 END

Execute this program and enter data.
The display screen of execution result is as follows.
A.Y T= 185

_ Total score for a name is displayed sequentially each
K.KT= 224 e the &) key is pressed.

S.0 T= 163
AVE. = 64.3 — Average score of English(0)
AVE. = 64.7 — Average score of Mathematics(1)

AVE. = 61.7 — Average score of Science (2)

LG

AVE. = 190.7— Cumulative average of each person’s total score

86



3-18 STATISTICAL FUNCTIONS

Statistical computation capabilities are essential to business and engineer-
ing for analyzing data and making projections. The PB-770 features all of
the essential statistical functions listed below, so troublesome computa-
tions are simplified while correlation coefficients and estimated values,

etc. can be quickly determined.

*STAT LIST@displays the names and values of the basic statistics
(indicated by * below). To suspend display press ). Pressing &) again
will resume the display. Entering STAT LLIST @] will output the basic

statistics to the printer.

Format Function
CNT* n | Number of data items processed
SUMX* 2x | Sum of x data
SUMY* 2y | Sum of y data
SUMXY* | Zxy | Sum of products of x data and y data
SUMX2* | 5x® | Sum of squares of x data
SUMY2* | Z4* | Sum of squares of y data
MEANX x| Mean of x data
MEANY ¥ | Mean of y data
SDX x0on—1 | Sample standard deviation of x data %E_)x&
SDY yon—1 | Sample standard deviation of y data v n—z”jj:l%f’)i
SDXN x0n ::):l:jl::;on standard deviation W
SDYN yon :?;tﬂ:gon standard deviation no> 42 —nz
DRl
LRB B | contticiont o SRS
COR r | Correlation coefficient n2xy 2z 3y
VinSx2— (Zx2)Y [nSy?—(Sy)7
Eox | & [Cimeeatomy % EOX(y) = LKA
EOY S| 9 [estimated tromm EOY (1) =LRA+x:-LRB

87




CHAPTER 3 “BASIC” REFERENCE

STAT CLEAR®@) should be entered to clear the statistical memory area
before new data is entered.

= Statistical Data Input
® Single variable

Individual data input . .......... STAT data &)
Multiple input of same data . ... .. STAT data®mf) 5 frequency &)
® Paired variable
Individual data input . .......... STAT x data (1) y data@)
Multiple input of same data...... STAT x data () y data &)
frequency &)

Data is input using the &) key, but such results as standard deviation are
obtained using the key. Incorrect operation will result in an SN error

being displayed.

The table represents the shipments of articles x and y over a period of 5
days. Calculate the standard deviation and determine the variance in the

shipments.
Atde— a4 |s|6|7 |8
x 2|1 2|5]| 8
¥ 1 5 51| 56 9
Operation:

STAT CLEAR&D

STAT2(>]1 &) STAT2(:)5 &) STATS5( )5 &
STAT8(:)5 & STAT8[*]9 &I

STAT LIST & (Basic statistics will be displayed automatically.)

r

CNT B rveerereeeenes Number of data items
SUMX 25 - Sum of x data
SUMY 25 --eeeee Sum of y data

...... Sum of products of
SUMXY 149 x data and y data

SUMX2 161 Sum of squares of x data
SUMY2 157 Sum of squares of y data

88



3-18 STATISTICAL FUNCTIONS

MEANX
MEANY
SDXN
SDYN

Ready PO
5 Mean of x data
5 Mean of y data

Population standard
2.683281573...... deviation of x data

2.529822128 Population standard
""" deviation of y data

& J

According to these statistical results, the standard deviation of article x is
larger than that of y though the sums and means are the same. Therefore,
it can be said that the variance in the shipment is greater for x.

Use the following data for regression computation and determine the
correlation coefficient and estimated value.

The following table shows last year’s advertising expense ratio (adver-
tising expenses/operating expenses x 100) and operating profit ratio
(operating profits/sales x 100) for chain of 7 supermarkets.

1 2 3 4 5 6 7

Advertising expenseratio(x) |08 | 2.1 |25 (18| 3.1 |40 1.0

Operating profit ratio (y) 25(34|37 (3243|6323

I

Operating profit ratio

1 2 3 4
Advertising expense
ratio

x

Use the table to produce a scatter diagram.
Looking at the scatter diagram, it can be said that
profit was directly proportional to the amount
spent for advertising. A line connecting the
plots (dots) in the diagram is called a regression
curve, and, since it is almost a straight line in this
example, it is called linear regression. Regression
curves are logarithmic, exponential and power
curves, and the selection of the curve depends
upon the relationship between the x and y data.
It should be noted that the range of the correla-
tion coefficient (r) is —1 <r < 1. The correlation
is positive when 0<r< 1, negative when
—1 < r<0, and no correlation exists when r=0.

Now let’s input the data for the 7 stores.

89



CHAPTER 3 “BASIC” REFERENCE

Operation: STAT CLEAR &)

STATO.8(7)2.5EsTAT2.1(1)3. 4&DsTAT2 . 5(3)3. 7 &)

STAT1 .8(7)3.2@JSTAT3.1()4.3&JSTAT4 . 0(>)6 .3
STAT1.0(:)2.3)

Linear regression
LRA 1.174221646 - constant term (A)
LRB 1.142512973 - té’;ﬁ?{cfeeﬁ{e(sé'f“
COR ©.9628252383 - Correlation

coefficient (r)
The correlation coefficient (r) indicates that x and y have a positive
correlation. Now let’s calculate how much advertising expense ratio is
required for an operating profit ratio of 5.7% and how much operating
profit ratio can be expected from an advertising expense ratio of 4.5%.

EOXS.7 3.961248986
EOY4.5 6.315530022

These results tell us that an advertising expense ratio of 3.96% is required
for an operating profit ratio of 5.7%, while an advertising expense ratio
of 4.5% can be expected to produce an operating profit ratio of 6.32%.

90



3-18 STATISTICAL FUNCTIONS

® Logarithmic, Exponential and Power Regression
Let’s apply the various types of regression to the data in the table below.

Year (x) | Results (1)
‘79 5,810
‘80 5,637
‘8l 6,736
‘82 7,938
‘83 8,169

® Logarithmic regression

The regression formulais ¥y = A+ B -lnx
The logarithm of x is input for x data, and y data is input as it is.
ZlInx,Z(Inx)? and ZInxy are obtained for £x,Zx? and Zxy respectively.

Operation:

STAT CLEAR@)

STAT LOG54(5)581 0@JSTAT LOG55(+)5637 &)
STAT LOG56(>)6736&]STAT LOGS57(>)7938 &)
STAT LOG58()8169@&)

LRA —151086.8602 Regression constant term (A)
LRB 39240.6409 Regression coefficient (B)
COR ©.9461867989 Correlation coefficient (r)
COR 2 ©.8952694585  Decision coefficient (r?)

® Exponential regression

The regression formulais ¥ =A-eB*(lny=InA+B-x)
The logarithm of y is input for y data, and x data is input as it is.
InA, ZIny and Zx.Iny are obtained for A, SUMY and SUMY?2 respective-

ly.

91



CHAPTER 3 “BASIC” REFERENCE

Operation:  STAT CLEARE)
STAT 54(:)L0G5810 @) STAT 55()L0G5637 &)
STAT 56(2)L0G6736 &) STAT 57(:)L0G7938 &)
STAT 58(7)L0G8169E&)

EXP LRA 21.93154256 Regression constant term (A)

LRB 2.102384121 Regression coefficient (B)
COR ©.9442661562 Correlation coefficient (r)

® Power regression

The regression formula isy = A-xB (Iny =InA + B-Inx).

The logarithms of x and y are input for data x and y respectively.

InA, ZInx, Z(Inx)%, Zlny, Z(Iny)2and Z(Inx-Iny) are obtained for A,
Zx, Zx?, Ty, Zy? and Zxy respectively.

Operation  STAT CLEAR ()

STAT LOG54(7)L0G581 0@ STAT LOGS5()LOGE637 )
STAT LOGS56(7)L0G6736 @) STAT LOG57(7)LOG7938E&)
STAT LOGS58(>)L0G8169 &)

EXP LRA 6.651154824E-07
LRB 5.725355325
COR ©.9433168782

92



3-19 USING GRAPHIC CHARACTERS

The characters shown on the Character Code Table on page 327 can be
used by the PB-770.

(1) CHRS function

The word “NAME” can be displayed on the screen using the following
command.

PRINT “NAME"” &
The CHR$ function can also be used to produce the same display.
PRINT CHR$(78); CHR$(65); CHR$(77); CHR$(69) &J

As can be seen, specifying a character code for the respective letters
caused them to be displayed on the screen.

The other characters can be used in the same manner.

The following table illustrates some of the codes.

Code Number Display Code Number Display
32, 160 164
161 . 165
162 l‘ 176 -
163 -

(2) Graphic symbols
The following program will produce a display of 5 playing cards.

10 CLS

20 FOR I=0 TO 4

30 LOCATE Ix3;1:PRINT I+3

40 LOCATE Ix3+1,2:PRINT CHR$(232+1 MO

D 4>
50 DRAU(I%x24+4,4>-(1%24+203,4>-C(1%24+2

8,26)-(1%24+4,26)-(1%24+4,4)
60 NEXT 1
78 IF INKEY$="" THEN 70
80 END

93




CHAPTER 3 “BASIC” REFERENCE

Execution Result

3 4 5

¢V 0

94



3-20 DISPLAYING PATTERNS paﬂO““

The PB-770 is capable of displaying patterns which cannot be found in
the Character Code Table. Let’s try to display the pattern shown below.

Display format

AB$="FF18DB5A5ADB 18FF" &)
PRINT $AB$ &)

After the above noted key operation, a pattern should appear on the
screen.

(1) Display process

Displays are produced by attaching a $ before a character variable (in
this case AB$). This same process can also be used in a program.

The string that is assigned to AB$ is made up of hexadecimal values (the
hexadecimal number system uses numbers @ through 9 plus alphabetical
characters from A through F). This same configuration can be used to
produce a variety of user generated graphics.

(2) Pattern configuration

Graphics are produced using the hexadecimal pattern shown below. The
pattern is an 8 x 8 grid, and each of the 64 positions of the grid represent
a dot on the screen.

As can also be noted, dots are arranged into 16 groups of 4 dots each.
These 16 groups are numbered according to the hexadecimal system
mentioned above.

SISISICISIGIOIS)
SISISICIGIOIO)

95



CHAPTER 3 “BASIC” REFERENCE

(3) Dot designation
Dots are specified using the hexadecimal values. The following shows
the binary equivalents of the 16 hexadecimal values.

® Hexadecimal Binary

0—0000 4>0100 81000 C—1100
10001 5—0101 9—1001 D—1101
250010 60110 A—1010 E—>1110
30011 7-0111 B—1011 F—>1111

The above table shows that the hexadecimal values can be expressed as
4-digit binary values. On the screen a binary ‘“1” indicates that a dot is
displayed, while a ““@”’ indicates that the dot is not displayed.

It is important to note, however, that the PB-770 counts dots from left
to right, from @ through 3. It should also be noted that this counting
system is the opposite that of the binary number system.

The following table illustrates the 16 patterns possible with the 4-dot
groups. Specifying the proper hexadecimal value will produce the
corresponding pattern on the screen.

Pattern Hexaded tae Pattern Hexaded e,
1111 ) . 8
7] 1 | N | 9
N NN 2 (. A
| __HN 3 | B | B
En N 4 (. C
| B N 5 | . D
(] 6 (- E
N 7 I F

(4) Cautions

The following points should be noted when defining patterns.

1. Failing to include a ““$” directly before the character variable will
cause the string in the variable to be produced on the screen.

2. Pattern display cannot be accomplished if the assigned string is longer
than 16 characters, if it is shorter than 16 characters, or when the
LPRINT command is used.

96



3-20 DISPLAYING PATTERNS

(5) Using character definition to display “* afy "’
The following program is included to help you get some practice with
character definition. When executed, the program displays “ afy .

10 A1$="000442A21113E60BQB"
20 A2$="C12222A12222E320"
30 A3$="002241CB4060860402"
40 PRINT 3$A13$;$A2%; $A3S;

(6) Pattern utility

It is often difficult to convert a hand-drawn pattern to hexadecimal
format for input to the computer. The following program makes it possi-
ble to develop a pattern on the screen of the PB-770 itself and then auto-
matically convert it to hexadecimal.

First, input the utility program on pages 98 and 99 into the PB-770.
After confirming that input was performed correctly, enter RUN &J.

An 8 x 8 grid will appear on the left side of the screen. The blinking dot
at the upper left position of the grid represents the pattern cursor. The
word “ON”" or “OFF” on the right of the screen indicates the status of
the pattern cursor. ON indicates that a dot is present at the pattern
cursor position, while OFF indicates that a dot is not present. The (-]
key is used to switch the status of the pattern cursor. Movement of the
pattern cursor is controlled by the following keys.

Movement of the cursor is confirmed by a beep each time one of the
movement keys is pressed. Try moving the pattern cursor around the grid
and turning some dots ON and OFF. Try making a pattern of your
choice.

97



CHAPTER 3 “BASIC” REFERENCE

Once a pattern is formed, press the € key. Shortly, the hexadecimal
value that represents the pattern formed above will be displayed. Write
down this value and assign it to a registered character variable in the
PRINT$ statemient to display the original pattern that you created above.

10
20
30
40
50
60

70
80

30
100
110
120
130
140

150
160
170
180

190

200
210
220
230
240
250
260
270

CLs

X=2:Y=2:F=0

FOR I=0 TO 32 STEP 4
DRAWCI, @>-CI,31)

IF I1=0 THEN 70
DRAWCA, 1>-<(31, 1>

NEXT 1
LOCATE 11, 3:PRINT "OFF";

BEEP

K$=INKEY$: L=ASC(K$) :N=UAL (K$>

IF L=12 THEN 210

DRAUWCX, Y)

DRAUC (X, YD

IF F=1 THEN DRAWC(X, Y :DRAWC(X-2>-4

+100, (Y-2>,4>:G0TO 160

DRAUC((X-2>/4+100, (Y-2>,4)

IF K$="" THEN 100 ELSE BEEP

LOCATE 11,3

IF L=46 THEN IF F=@ THEN F=1:PRINT
"ON "; ELSE F=Q:PRINT "OFF";

IF N>@ THEN IF N<1@ THEN IF NKOS T

HEN GOSUB (N+4)>%100

GOTO 100

AAs="":BEEP

FOR K=@ TO 7

Z2=0

FOR I=0 TO 3

IF POINTCI+100,K><>3 THEN Z2=2+2"1

NEXT 1

AA$=AA$+RIGHTS$ (HEX$(Z2), 1)

98



3-20 DISPLAYING PATTERNS

280
230
300

310
320
330
340
350
360
370

380
500
o510
520
600
610
/700
710
720
800
810
1000
1010
1100
1110
1120
1200
1210
1300
1310
1320

Z2=0

FOR I=4 T0O 7

IF POINTCI+180,K><>8 THEN Z=2+2"~(1
-4>

NEXT 1

AA$=AA$+RIGHT$ (HEX$(Z), 1)

NEXT K

CLS :BEEP :LOCATE 108,08:PRINT $AAS$

PRINT " $";AA$; "$"

PRINT " OK7<Push an» kex»>";
K$=INKEY$:IF K¢="" THEN 370 ELSE 1
7

END

X=X-4:Y=Y+4:IF X<Q@ THEN X=30
IF Y>30 THEN Y=2

RETURN

Y=Y+4:IF Y>30 THEN Y=2
RETURN

X=X+4:Y=Y+4:IF X>38 THEN X=2

IF ¥Y>30 THEN Y=2

RETURN

X=X-4:1F X<B THEN X=30
RETURN

X=X+4:1F X>30 THEN X=2
RETURN

X=X-4:Y=Y-4:1IF X<Q THEN X=30

IF ¥Y<@ THEN Y=30

RETURN

Y=Y-4:IF Y<O THEN Y=30
RETURN

X=X+4:Y=Y-4:1F X>38 THEN X=2
IF Y<@ THEN Y=30

RETURN

99



3-21 PB-770 GRAPHIC FUNCTIONS

The PB-770 has a large liquid crystal display (LCD) which displays 20
characters x 4 lines, and also has 160 x 32 dots which allow graphic
displays.

PB-770 graphics can draw a precision graph and patterns using simple
commands.

Also, a 4 color 114 mm wide plotter-printer with cassette interface (FA-
10 or FA-11) can be connected to the PB-770.

Since up to 80 characters can be printed on 114 mm wide paper, this
printer can be used in almost the same way as a full-scale plotter printer.
The compact PB-770 is provided with sophisticated graphic functions
that should be mastered to fully utilize its capabilities.

Although you may feel them troublesome at first, you will soon become
accustomed to the graphic functions with experience.

Plotter-printer with standard cassette tape recorder and cassette interface (FA-11)

...........

3 il st riav_iw

CASIO [0

100



3-22 GRAPHIC COMMANDS AND SCREEN
COORDINATES

Graphics are drawn on the screen by connecting a series of dots, so the
only thing required for graphics is providing dots at the proper locations.
The PB-770 has two commands which are used to draw and erase dots at
specified locations on the screen.

DRAW . ... Draws dots and straight lines.
DRAWC . .. Erases dots and straight lines.

Also, the following convenient function is provided for graphics.
POINT .... Shows whether a dot is drawn or not at a specified location.

It is necessary to understand dot locations (coordinates) on the screen
before explaining the use of the above commands and function.

The small numerals (horizontal: @ to 159, vertical: @ to 31) in the figure
below indicate dot locations (graphic coordinates), while the large

numerals (horizontal: @ to 19, vertical: @ to 3) indicate character coordi-
nates.

A character is drawn by 8 x 8 dots, and its display location has to be
determined.

Conversely, dots and lines can be drawn at any location using graphic
coordinates.

The straight line from (3, 29) to (29, 17) was drawn by a graphic com-
mand which allows graphics to be freely drawn anywhere.

Screen coordinates

1 2 3 4 5 6 17 18 19

0 2 4.6 8 1012 14 16 182022 24 26 28 30 32 34 36 38 40 42 44 46 48 50 138 140 142 144 16 148 150 152 154 16 158 159

B
'ABCD

|
!
]
ST

101




CHAPTER 3 “BASIC” REFERENCE

Graphic coordinates consist of 5120 dots with 160 dots in the X direc-
tion and 32 dots in the Y direction. The top left corner of the screen is
(0, 0), and the bottom right corner is (159, 31).

Dot locations on the screen can be specified using these coordinates.

For example, to draw a dot at the (X, Y) location, use

DRAW (X, Y)
and to erase a dot at (X, Y), use
DRAWC (X, Y)

A straight line can be drawn with the same command by specifying the
coordinates at both ends (X1, Y1) — (X2, Y2) of the line as follows.

DRAW (X1, Y1) — (X2, Y2)

A line that connects three dots (X1, Y1) — (X2, Y2) — (X3, Y3) can be
drawn by specifying the following.

DRAW (X1, Y1) — (X2, Y2) — (X3, Y3)
Any number of lines can be drawn as a single line by linking coordinates
with “="",
A straight line can be erased by specifying the following.

DRAWC (X1, Y1) — (X2, Y2)

When a dot at a specified location is lit (drawn), the POINT function
produces 1, and when not lit 0. For example, the point at (X, Y) can be
checked as follows.

POINT (X, Y)

The values 1 which indicates a dot is drawn, and @ which indicates a dot
is not drawn can be used in a program by assigning the value to a vari-
able as follows.

A =POINT (X, Y)

Let’s look at programs for drawing polygons using the method for
drawing a straight line that was previously explained.

To draw a polygon, link the coordinates at the vertexes with the DRAW
command.

102



3-22 GRAPHIC COMMANDS AND SCREEN COORDINATES

® Triangle
A program that draws a triangle with vertexes (100, 5), (85, 25), (125,
25) is as follows.

10 REM —-- TRIANGLE ---

20 CLS

30 DRAW(1088,5>-(85,25>-(125,25>-(100,

55

4@ END
Coordinate specification by the DRAW Triangle drawn on the screen
command can also be performed with
numerical expressions. (108, 5)

For example, the program above can be
rewritten using numerical expressions
as follows.

(85, 25) (125, 25)
1@ REM --- TRIANGLE ---
20 CLS
30 X=100:Y=5 - Dot coordinates where drawing starts.
40 DRAUCXs Y)-(X-155Y+20)-(X+25,Y+20) -
(Xs3Y)
50 END

103



CHAPTER 3 “BASIC” REFERENCE

= Rectangle

The following program draws a rectangle with the straight line (80, 5) —
(150, 28) as its diagonal.

18 REM --- RECTANGLE ---

20 CLS

30 DRAW(8BB,5>-(150,5>-(150,28>-(80, 28
)—-(80,5)>

40 END

® Equilateral Pentagon

An equilateral polygon is one that is inscribed
inside a circle with each vertex having equal

spacing.

The figure on the right shows an equilateral /\
pentagon inscribed inside a circle with radius R.

The lines that connect the 5 vertexes with the '

center of the circle all cross at the same angle, )
A (in this case A=72°). Y,

A program for a pentagon inscribed inside a
circle with a center (100, 18), and a radius

15 can be drawn as follows.

Equilateral Pentagon

10 REM --- PENTAGON ---
20 CLS

30 R=15 = e Radius

40 X=100:Y=18 - Center of circle
50 A=360/5 - Angle

60 FOR I=0 TO 360 STEP A

70 DRAUCX-SINCI>XR>Y-COSCI>*R>—-(X-SIN
(I+A>%R5 Y-COSCI+AIXRD

80 NEXT I

30 END

104



3-22 GRAPHIC COMMANDS AND SCREEN COORDINATES

s Equilateral Polygon N
Equilateral polygon N can be freely drawn by changing angle A in the
program for the pentagon.
Pentagon A = 360/5
Polygon N A = 360/N
The following is a general purpose program that draws an equilateral

polygon N after N is entered.
The center of the circle is (100, 15).

12 REM --- POLYGON

20 CLS

30 R=15 e Radius

40 X=100:Y=15 e Center of circle

50 INPUT "N=";N «eeeee Equilateral polygon N

60 A=360/N e Angle of equilateral polygon N

780 FOR I=0 TO 3680 STEP A

80 DRAWCX-SINCID>*RsY-COSCI>*R>—(X-SIN
CI+AYXR,> Y-COSCI+AD%XRD

90 NEXT I

100 END

105



3-23 DRAWING A CURVE

A curve can be drawn by specifying dot coordinates on the screen.
The problem, however, is how to specify the coordinates.

Many different curves can be drawn using mathematical formulas.
Let’s draw a circle and SIN curve as follows.

m Circle

As the value N in the equilateral polygon program of the last section
increases, the resulting figure comes closer to being a circle. Although,
from a strictly geometrical point of view, a polygon can never be a circle,
curves are actually produced on the screen by linking a series of straight
lines.

The following program produces a circle with a radius of 15 originating
at coordinates (100, 15).

18 REM —--- CIRCLE

286 CLS

30 FOR 1=0 TO 3608 STEP 5

40 X=100+COSCI>X15 - Horizontal ciotposition
he ci .

5@ Y=15-SINCI)¥15 .o Vertical dot position on

60 DRAUC(X, YD the circular arc.

70 NEXT 1

80 END

106



3-23 DRAWING A CURVE

= SIN Curve

The value of the SIN(I) function changes from @to 1 to @ to —1 to @ as
the value of | progresses from @° to 360°.

Therefore, a sine curve can be produced by drawing dots (that have been
magnified to a suitable size) along a vertical axis. The following program
draws a sine curve together with the X and Y axes.

190 REM --- SINE ---

20 CLS

30 A=65:B=15""" SIN curve origin (origin of the X, Y axes).

40 M=12 e Enlargement

50 FOR I=0 TO 360 STEP 4

60 X=A+1/4 @ o X coordinate dot

70 Y=B-SINCI>XM oo Y coordinate dot

80 DRAUWCX,Y)

90 NEXT 1

100 DRAWCAs 2>-CA»28) e Y axis

110 DRAUWCABY-(A+32,B) ......... X axis

120 END
Ready PO I//’ N
) ‘ ‘\\\\ ,/’/’

107



3-24 DRAWING A LINE GRAPH

Line graphs are often used when time variations are checked, such as a
temperature changes or price changes over a period of time.

Therefore, it is recommended that the screen be fully utilized so that
changes can be clearly seen.

® Monthly Average Temperature

It is assumed that the monthly average temperature in a certain city is
as shown in the following table. Data is entered in the program using a
DATA statement. Then the monthly average temperature is drawn by
the line program while data are supplied using a READ statement.

Month Temp. (°C) Month Temp. (°C) Month Temp. (°C)
Jan. 11.5 May 19.8 Sep. 22.3
Feb. 9.8 June 23.4 Oct. 18.5
Mar. 13.7 July 26.6 Nov. 15.9
Apr. 18.3 Aug. 28.2 Dec. 14.7

182 REM --- LINE GRAPH ---
20 CLS

3@ FOR I=1 TO 3

4@ PRINT 30-C1-1>X10; CHRS (147).....cHRS (147)
50 NEXT I =F
6@ PRINT TAB(3):CHR$ (15475 .....cHRS (154)= L
78 FOR I=1 TO 12

82 PRINT CHR$C144); ...CHRS (144) =L

90 NEXT 1

180 FOR I=1 TO 12

110 X=36+(1-1)%8

120 READ A

138 Y=4+(38-A)%0. 8

142 IF I=1 THEN 160

108




3-24 DRAWING A LINE GRAPH

150 DRAUCP;Q)-C(XsY)

160 P=X:Q=Y

170 NEXT I

180 DATA11.5,9.8,13.7,18.3,19.8,23.4,2
6.6:28.2,22.3,18.5,15.9,14.7

200 IF INKEY$="" THEN 200 Prevents the screen from

scrolling.
210 END

A portion of the dot pattern is magnified as shown below to help visualize
the locational relationship of the graph’s values, vertical axis (Y), horizon-
tal axis (X), and lines. When you prepare a program for drawing a pattern
or graph, it is recommended that such a picture be drawn to determine
the locational relationship.

Dot Pattern

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 138 140 142 144 146 148 150 152 159 156 158 159

. 28 R
18 F -
: ———

3

o s O

e

i I N

If line 200 were omitted, a command wait occurs soon after program
execution has terminated which causes the following display and de-
stroys the graph.

Ready PO

Line 200 preserves the graph on the screen until a keys is pressed.

109



3-25 PREPARATION FOR DRAWING
A BAR GRAPH

® Drawing A Bar Graph Using Characters

When you execute the following program and enter the numerals from 1
to 20 to N, N number of — marks are displayed continuously.

1@ CLS

20 INPUT "N=";N

30 FOR I=1 TO N

40 PRINT CHR$C131); - CHR$ (131) is the == mark.
50 NEXT I

60 END

The length of the bar is proportional to the value of N. Since this unit is
capable of displaying 20 characters in one line, however, it is necessary
to scale N to keep values that exceed 20 within the limit of the screen.
For example, to display a value of 100, the program above is modified
as follows.

30 FOR I=1 TO N/6
or
30 FOR I=1 TO N STEP 6

It should be noted that with this program values from 90 through 95
would produce bars of the same length, so this technique is only capable
of rough approximations. Graphics can be used to overcome this problem.

® Using Graphics In A Bar Graph

The above program can be rewritten to include graphics as follows. By
employing graphics, a total of 160 display units are available for resolu-
tion that is 8 times greater than the method used above.

110



3-25 PREPARATION FOR DRAWING A BAR GRAPH

18 CLS

20 INPUT "N=";N

30 FOR I=1 TO Nx1.5

40 DRAWCI-1,8>-(I-1,14)>
50 NEXT 1

60 END

While the bars used for this program are plain, easy-to-read graphs can be
drawn by changing the pattern of the bars.

Bar graphs can be drawn with the following patterns by adding or substi-
tuting the following routines (a) to (d) in the above program.

@ ® © @
=25
I ..

@ 35 IF I=NXx1.5 THEN 40

36 IF I MOD 2=0@ THEN 50

® 30 FOR I=8 TO 14 STEP 2
40 DRAWC(D, I)-(NX1.5-151>

© 35 FOR J=8 TO 14 STEP 2
40 DRAWCI-1,J+CI+1> MOD 2>
45 NEXT J

@ 25 FOR J=8 T0 14
30 FOR I=1 TO Nx1.5 STEP 3
35 X=(J-8) MOD 3+I-1
36 IF X>NX1.5-1 THEN X=Nx1.5-1
40 DRAWCX> IO
50 NEXT I:NEXT J

111



3-26 TWO EXAMPLES OF BAR GRAPH
PROGRAMS

Bar graphs are often used to provide representation of relative relation-
ships among academic scores, sales, production amounts, etc. Besides
this, the graph must be scaled to accurately show the magnitude of each
item while keeping within the physical restrictions of the screen.
Basically, bar graphs can be classified into two general categories. The
first type shows the relationship amonga number of quantities by assigning
each quantity to its own bar. (i.e. production or sales totals for individual
products.) The second type shows the relationship of individual quan-
tities to the whole. (i.e. production or sales totals for individual products
compared with overall totals.)

Now let’s prepare programs for both of these two basic types.

Data example: Production amounts for vehicles A and B are shown in
the following table.

1980 1981 1982
Vehicle A 48,200 57,200 67,200
Vehicle B 39,200 31,100 27,500

I : Pattern of the bar graph for vehicle A.
Pattern of the bar graph for vehicle B.

m Assigning Each Item To Its Own Bar

10 REM --- BAR GRAPH ---

20 CLS

30 FOR I=0@ TO 2

40 LOCATE ©>1

50 PRINT 80+I1;CHR$C(136) - CHR$ (136)=1
6@ FOR J=1 TO 2

70 READ A

80 FOR K=@ TO 2

112



3-26 TWO EXAMPLES OF BAR GRAPH PROGRAMS

90
100

110
120
130
140
150

Display Example

Y=1%8+(J-1)%4+K

IF J=2 THEN IF K=1 THEN DRAW(24+As
500, Y>:G0TO 120
DRAW(25,Y)>-(24+A,500, Y>

NEXT K:NEXT J:NEXT I

IF INKEY$="" THEN 130

END
DATA48200, 33200, 57200, 31100,6.7200,
27500

® Comparing Individual Totals with Overall Total

10 REM ---BAR GRAPH ——-

20
30
40
50
60
70
80
1%
100
110
120

CLS

FOR I=0 TO 2

LOCATE @1

PRINT 80+1;CHR$(136)
READ A»B

FOR J=0@ TO 6

Y=1x8+1J
DRAWC(25:Y)-(24+A/10005Y>
NEXT J

X=24+A/1000: Y=1%8
DRAUWC(X+1,Y)-(X+B-/10800, Y)>-(X+B-/ 1000
yY+6)—(X+1,Y+6)

113



CHAPTER 3 “BASIC” REFERENCE

130 NEXT 1

140 IF INKEY$="" THEN 140

150 END

160 DATA48200,33200,57200,31100, 67200,
27500

Display Example

80
81
82

114



3-27 ANIMATION DRAWING

When you execute the following program, the % mark moves to the left
and right.

18 CLS

20 FOR I=5 TO 15
30 LOCATE Is1

40 PRINT " x*

50 NEXT I

60 FOR I=15 TO 5 STEP -1

70 LOCATE Is1 Moves from right
80 PRINT "x " to left.

90 NEXT 1

160 GOTO 20

Moves from left to right.

As can be seen above, the control variable (I) increments from 5 to 15.
This means that the coordinates of the LOCATE command in line 30 are
sequentially changed from (5,1) through (15,1). It should be noted that
the PRINT command in line 40 is written with a space inserted in front
of the “xk".

This space is essential because it ‘‘erases’’ the previously drawn ““ %"’ by
replacing it with an empty space. This sequential displaying and erasing
along successive positions produces an illusion of movement from left to
right. Lines 60 through 90 decrement the control variable to reverse the
procedure and cause the ‘“ % ”’ to move from right to left on the screen.
This short program represents the basic principle of graphic animation.
Vertical movement is performed in a similar manner, but, since the * %"
is displayed in successive lines of the screen, a statement must be added
to return one line to erase the previous ‘‘ % ”’. The following program
illustrates vertical animation.

1@ CLS

20 FOR I=0 TO 3

30 LOCATE 185 I1:PRINT "xX";

40 IF I=0 THEN 60 Moves from up to down.
50 LOCATE 1@, I-1:PRINT " "

60 NEXT 1

115



CHAPTER 3 “BASIC” REFERENCE

70 FOR I=3 TO @ STEP -1
80 LOCATE 10@>I:PRINT "x";

99 IF I=3 THEN 110 Moves from
down to up.
100 LOCATE 10> I+1:PRINT " "
110 NEXT 1
120 GOTO 20
® Adjusting Speed

If the % mark moves too fast in the above program, the speed is con-
trolled using a FOR-NEXT statement.

Execute the program after adding the following line to the horizontal
movement program.

45 FOR J=1 TO BO:NEXT J

When this statement is used, the speed of the movement from left to
right becomes slightly slower. The speed is increased by reducing the
final value of the FOR-NEXT statement, and is reduced by increasing

the value.

® Moving A Dot Like A Curved Line
The movement of a dot to form a curved line is accomplished using

graphic coordinates.
In the following program, a dot repeatedly moves along a dotted line
enclosed within a frame. (See Execution Example.)

18 CLS
20 DRAWC(13,0>-(13,31>-(137,31)-(137,0>

------ Draws a frame.

30 DRAUC14,0>-C14,30>-(136,30>-C(136,0)>

----- Draws a frame,

116



3-27 ANIMATION DRAWING

40 N=1:P=14

50 FOR 1=0 TO 360 STEP 3 ‘ ‘
60 X=P+N:Y=29-25%ABS(COS(I)) - Computation of dot coord
70 DRAWC(X: Y)

80 IF P=14 THEN 100

99 DRAWCCP,Q)

198 P=X:Q=Y

110 NEXT I

120 N=-N

132 GOTO 5@

Execution Example

® POINT Function
The POINT function checks to see whether a dot is drawn or not at a
specified location of the graphic coordinates.
If a dot is positioned at horizontal coordinate (X) and vertical coordinate
(Y).

POINT (X,Y)----1
If a dot is not at that position,

POINT (X,Y)----0Q

The following program provides an example of the POINT function.
At first, “CASIO PB-770" is displayed on the first line, then the
POINT function checks whether each dot is drawn or not, and copies
it to the third line depending on the value of (X,Y).

117



CHAPTER 3 “BASIC” REFERENCE

10
20
30
40
50
60
70
80
90
100

CLS
PRINT "xx% CASIO PB-770 XXx"
FOR X=0 TO 158
FOR Y=0 TO 7
IF POINT(X,Y>=0 THEN 70
DRAU (X, Y+16)
NEXT Y
NEXT X
IF INKEY$="" THEN 90
END

Lines 30 through 8@ confirm whether or not dots are drawn in the first
line of the character coordinates. If dots are not present, execution
jumps from line 50 to line 70. If dots are detected, they are reproduced
at the same location of the character coordinates in the third line.

A hardcopy of the display can be produced using the optional FA-10 or
FA-11 plotter-printer. Though details on the use of printers are included
in another section, the following program is included as reference.

10
20
25
30
40
50
55
60

70
80
90
100

CLS

PRINT "CASIO PB-7-@"
LPRINT CHR$(28); CHR4$(37>
FOR X=@ TO 159

FOR Y= TO 7

IF POINTC(X,Y>=0@ THEN 70
U=XX%0.59: U=Y%x0.59

LPRINT "D";U;"s";—1%UW;">";U+0.4; ",
";—=1%CU+A3. 4

NEXT VY

NEXT X

IF INKEY$="" THEN 90
END

118



3-28 GAME APPLICATIONS

The animation learned in the previous sections is often used for games,
and the following program illustrates this. Though requiring no particular-
ly difficult technique, games require routines that realistically produce

graphic animation.

The length of the program may make it look rather imposing, but it is
suggested that the user try some modifications to become familiar with
the function of each line. This is one of the best ways to add new pro-

gramming techniques to your repertoire.
First, input the following program.

10

20

30

40

50
100
110
120
130
140
200
210
220
300
310
320
330
340
350

360
370

REM ---BLOCK DESTROY---
CLS

FOR I=0 TO 3

LOCATE 25 I1:PRINT CHR$C(137);
NEXT 1

FOR I=3 TO 6

FOR J=0 TO 3

LOCATE 1,7

PRINT CHR$(141)>;

NEXT J:NEXT 1

LOCATE 1751

PRINT CHR$(147)

R=1:5=0

FOR N=3 TO 1 STEP -1

LOCATE B5;0:PRINT N

X=10: Y=INT(RNDXx2+1):A=1:B=1
LOCATE X5 Y:PRINT CHR$(236);
Q$=INKEY$

IF @%$="1" THEN GOSUB 500 ELSE IF Q

$="0" THEN GOSUB 600
IF X=3 THEN A=-A

IF Y=0 THEN B=-B ELSE IF Y=3 THEN

B=-B

119



CHAPTER 3 “BASIC” REFERENCE

380
390
400
410
420
430
440
450

460
470
480
430
500
510
520
530
540
600
610
620
630
/00
710
720
730

740
800

IF X=16 THEN GOSUB 80@
LOCATE XsY:PRINT " “;
IF X>16 THEN 440
G=(X+A)X8: H=(Y+B) %8
P=POINT(GsH)>
IF P=1 THEN GOSUB 70@
X=X+A:Y=Y+B
IF X>18 THEN BEEP :BEEP :BEEP ELS
E 330
NEXT N
CLS :LOCATE 25 1:PRINT "SCORE "3S
FOR I=1 TO 6:BEEP 1:NEXT 1
IF INKEY$="" THEN 490 ELSE END
LOCATE 175R:PRINT " ";
R=R-1
IF R<@ THEN R=0
LOCATE 17;R:PRINT CHR$(147);
RETURN
LOCATE 17,R:PRINT " ";
R=R+1:IF R>3 THEN R=3
LOCATE 175R:PRINT CHR$(147);
RETURN
S=S+8-X:BEEP 1
LOCATE X+AsY+B:PRINT " ";
X=X+A:Y=Y+B: A=-A
IF ¥Y=0 THEN B=-B ELSE IF Y=3 THEN
B=-B
RETURN
IF ¥Y=R THEN A=-A:BEEP ELSE IF Y+B
=R THEN BEEP :A=-A ELSE 830

120



3-28 GAME APPLICATIONS

810 IF RND<K@.” THEN 838
820 LOCATE X, Y:PRINT " ";:X=X-1
830 RETURN

Line 420 uses a POINT function to check whether or not a dot is present
at a certain location of a block. It does this by checking only the coordi-
nate of the top left corner as shown below.

= How To Play

When this program is executed, blocks are drawn on the left and a racket
is drawn on the right. A ball moves across the screen and the player must
move the racket into place to keep the ball in play. Pressing the (1) key
raises the racket and pressing the key lowers the racket. If the player
misses the ball with the racket, a miss is registered and the next ball is

served. Missing three times ends the game. The final score is displayed at
the end of the game.

® Variable Table Of Block Destroying Program

Ball direction

Coordinates for checking whether a block is drawn or not
Variables for drawing blocks and fence

Number of remaining balls

Check whether a block is drawn or not

Racket direction

Racket position

Score

Ball position

O
Z—I ™

Q_
L% )

X
<nA

121



3-29 DRAWING A PATTERN WITH THE
PLOTTER-PRINTER

Hardcopy can be produced with the connection of the optional FA-10 or
FA-11 plotter-printer with cassette interface. Though a plotter-printer
can be used for printing of text, it is especially suited for graphics. Both
types of output are produced by drawing a number of dots in series to
form the final figure.

This is similar to the method used for the production of figures on the
screen, but the mechanical operation of the printer necessitates special
commands to increase speed.

Though there are large number of plotter commands, their use makes
operation much faster and contributes much to making programming
easier.

® Commands

All commands for making graphics with the plotter-printer start with
LPRINT.Manyfunctionscan be performed when the commands shown in
the command table are used together with LPRINT.

However, it is necessary to specify the graphic mode with the following
statement before using these commands.

Graphic mode specification: LPRINT CHR$(28); CHR$(37)

The following statement is used to cancel the graphic mode (i.e., to
specify the character mode).

Character mode specification: LPRINT CHR$(28); CHR$(46)

122



3-29 DRAWING A PATTERN WITH THE PLOTTER-PRINTER

Plotter Command Table

Command Name Description
0} ORIGIN Origin specification of ORG coordinates
D DRAW Links a dot with a dot specified by ORG
coordinates.
gﬁkﬁvﬂVE Draws a line up to a specified dot.
M MOVE Moves to position indicated by ORG

coordinates without plotting.

RELATIVE |Moves to specified position without
MOVE plotting.

Draws a parallelogram on X and Y axes
A QUAD with the diagonal of 2 dots indicated by
ORG coordinates.

Plotting
Draws a circle and circular arc with a dot
C CIRCLE specified by ORG coordinates as the
center.
Draws a coordinate axis from the origin
X AXIS of ORG coordinates in direction of +Y,
+X, —Y, and —X.
G GRID Dravyg horizontal or vertical stripes in a
specified square.
L LINE Draws a solid line, broken line, one-dot
TYPE chained line, or two-dot chained line.
LINE Specifies the pitch of a broken line, one-
B SCALE ﬂg; chained line, or a two-dot chained
Ehanrariom S ALPHA Specifies the size of characters and sym-
SCALE bols.
and
symbols Q ALPHA Specifies the rotary direction of charac-

ROTATE ters and symbols.

123



CHAPTER 3 “BASIC” REFERENCE
Command Name Description
Specifies character spacing for a following
z SPACE digit and line.
VERTICAL
Characters Y or Specifies horizontal or vertical writing.
and HORIZONTAL
symbols - -
P PRINT Prints a character string.
Draws a mark with a pen position as its
N MARK center.
] NEW PEN Pen color selection
F LINE FEED Ei?ter feed and paper return by one line
H HOME Modifies absolute coordinates, or shifts
Control the pattern to a location that is easy to see.
Checks pen use and pen ink.
Execution Example:
CHR$(64) |TEST LPRINT CHR$(28) ; CHR$(37);
CHR$(64) &)
t
Character T TAB Tabulator
control ? FORMAT Program list output

124




3-30 USING THE PLOTTER-PRINTER

Now let’s produce a simple pattern using the plotter-printer. The follow-
ing program connects the points at (0,0), (70,—30) and (90,10) with two
straight lines. Therefore, the D command should be used.

10 LPRINT CHR$(28);CHR$(37)>
20 LPRINT "D";@5;"5"3@;">"520@:",";-30;
"5"380@:",";510

|
(90,100  (0,0) (70,—30)

P VLV NS Sl T Y a U NG N NN

Execution Example (90, 10)
(0,9)
(70, —30)
AN ANANANASANNANNANNANSANNNAANS AN

The same technique can be used to connect any number of points
desired (as long as one programming line stays within the maximum of
79 characters).

The next program produces a circle graph. The C command is usually
used to produce a circle with the plotter-printer, but lines must also be
included to divide the circle to reflect the size of various data.

This particular program will use the data 100, 200, 300, 400 and 500 as

the data.
10 LPRINT CHR$(28)>;CHR$(37>
20 LPRINT "C48,-58,308"
30 S=0:T=0
40 FOR I=1 TO 5:READ A:T=T+A:NEXT I:R
ESTORE :R=0
58 FOR I=1 TO 5:Al=A
60 READ A:S=S+A

125



CHAPTER 3 “BASIC” REFERENCE

70 X=48+INT(30%XSIN(360%S/T>)>:Y=-58+IN
T(38%C0OS(368%S/TO>

80 LPRINT "D48, -508,":X:"s"3VY
90 A2=(A1+A)/2:G0SUB 200:NEXT I
S5 END

120 DATA100, 200, 300, 400,500

200 X=50+INT(20%XSIN(36B*XS/(T+A2))):Y¥=-
48+INT(20%COS(360%XS/(T+A2)))

210 LPRINT "M":;X-10:","3Y

220 B3$=STR$C(AD

230 LPRINT "P":Bs$

240 RETURN Execution Example

Line 40 contains a READ command that reads the data in line 100.
Lines 60 and 70 compute locations X and Y on the circumference of the
circle for all the data. Then line 80 connects each point (X, Y) with the
center of the circle.

126



3-31 USING PB-700 PROGRAMS

Though the PB-770 has more functions than the CASIO PB-700, pro-
grams written for the PB-700 can be used with the PB-770 without
modification.

It should be noted, however, that compatibility is only upward, and
certain programs written for the PB-770 cannot be executed with the
PB-700 without modification. Programs for the PB-770 must be rewritten
using only commands that can be executed with the PB-700.

Programs or data stored on cassette tape from the PB-700 can also be
used with the PB-770 without modification, but programs or data files
(DF) stored on cassette tape from the PB-770 cannot be read with the
PB-700,

The difference between the PB-770 and PB-700 is as follows.

® Additional command
POKE
® Additional functions

DEG, HYPSIN, HYPCOS, HYPTAN, HYPASN, HYPACS,
HYPATN, PEEK, DMS$, HEXS$, &H

® Modified commands
PRINT, CLEAR
® Modified function

CHR$

CAUTION: When using programs written for the PB-700, if DATA state-
ments are included in lines 2200 through 2299 or in lines
with 22 in the last two digits of the line numbers (e.g. 22,
122, 622), change the line numbers. (See page 208.)

127



CHAPTER 3 “BASIC” REFERENCE

Preface to Chapter 4

The following terms are used in the ““Format’’ section of each com-
mand or function described in Chapter 4.

® ““Numerical expression’
Numerical values, variables and computation expressions. Numerical compu-
tations are performed according to the precedence of the operators.

® ‘’Character expression’’
Character constants, character variables and character strings.
Character strings can be concatenated using the symbol ‘“+”. That is, addition
of character strings makes a character expression.
(Example) “ABC” + ““DE" + “F" = “ABCDEF"
Note that the number of characters of a character expression concatenated by
+ should be 79 or less.

® ““Variable”
Variables are used to store data. Since there are two types of data (numerical
values and characters or symbols), there are numerical variables (such as A or
B) and character variables (such as A$ or B$). Refer to Chapter 3 for details.

® ‘’Variable name"’
A variable is an uppercase letter (A to Z) or it can be followed by §, number,
or uppercase letter.
(Example) A, A$, AB, A1, XY$, X1$ ... etc.
“Variable name’’ means this format of variable.

® ‘‘Conditional expression”
A relational expression which compares the left side value and right side value
using relational operators (such as =, =<, >, <>, etc.)

® “Line number”
A number which is attached to the first position of each program line. Num-
bers 1 to 9999 can be used.

e “Comment
Comments are written at appropriate parts of a program in order to explain
program contents.
They do not affect the program execution at all.

® ‘‘Message’’
Messages are displayed on the screen in order to let you perform proper
in-put or to make the output easy to understand. They are used by
enclosing them with * .

® “File name”
A file name identifies programs or data transferred between cassette tape and
the computer.

128



\ cHAPTER 4

COMMAND
REFERENCE




4-1 MANUAL COMMANDS
AUTO

Function Automatically numbers program lines.

AUTO [first line number] [,increment]
Format 1< first line number < 9999)
1 <increment < 9999)

The AUTO command greatly facilitates programming by generating
sequential line numbers at preset increments.

With each press of the @] key, line numbers are continuously generated
from the line number specified by the first argument and incremented by
the step specified by the second argument. The default value for both
the first line number and the increment is 10. This command cannot be
executed with a password being specified.

This command can be released by the following operations.

1; Pressing the @) key without input after the line number is displayed.

2) Pressing the @ or €9 key.

3; Attempting to exceed line number 9999,

4) When an automatically generated line number equals an existing line
numb (@ displayed after the lin number).

AUTO 100

The above input causes sequential generation of line numbers from line
100 at increments of 10 (i.e. 100, 110, 120, etc.).

AUTO 50, 50

The above input causes sequential generation of line numbers from line
50 at increments of 50 (i.e. 50, 100, 150, etc.).

130



4-1 MANUAL COMMANDS

CONT

Function To restart the execution of a program that was
suspended by a STOP statement or i key entry.
Format CONT

The CONT command is used to restart program execution stopped by

the STOP command in a program or by operating the key. Program

execution restarts from the statement following the STOP command.
Once program execution is suspended, numerical variables can be checked
or changed before restarting, making this command a valuable debugging
tool.

Insert the STOP command between sections during program preparation
to provide easy debugging.
The following program was prepared as an example.

18 READ R>H

20 S=PIXR"2

30 STOP

40 U=SxH

50 PRINT R>H;S,U

680 DATA 10,20

78 END
When you execute this program with the RUN command, program
execution is suspended at line 30 by the STOP command.

Check the execution content of line 10 and line 20. To display the values
of the variables, press R , H and S . Then 10, 20 and
314.1592654 appear which proves that execution has been performed
correctly.

After checking has been completed, resume program execution using the
CONT command.

CONT &)
g&F SToP

131



CHAPTER 4 COMMAND REFERENCE

DELETE

Function Provides partial program deletion by line units.

DELETE In

DELETE In—

Formats DELETE —im

DELETE In—Im

In: First line to be deleted. Im: Last line to be deleted.
(1€ In < 1m £9999)

This command is used to delete a specific line in a program or lines in a
specified range.
When DELETE is used, it has the following basic formats.

(1{ DELETE line number. ... .. Deletes a specified line.
(2) DELETE line number — . ... Deletes lines from a specified line to
the last line of a program.
(3) DELETE — line number ... Deletes all lines up to a specified line.
(4) DELETE line number n
—linenumberm ......... Deletes the lines from line number

n to line number m.
In and Im have the following restriction.
1<In <Im <9999

This command cannot be used in a program.

A detailed explanation is provided using the following program.

180 REM DELETE SAMPLE
20 PRINT "28:A"
30 PRINT "30:B"
40 PRINT "40:C"
50 PRINT "5@:D"

(1) DELETE line number &

For example, when line 30 in the above program is to be deleted, enter
the following.

DELETE 30 &)

132



4-1 MANUAL COMMANDS

Also, the same deletion can be performed by the following operation.
30 @)

(2] DELETE line number — &] (Use the @ key to entera “—"".)

When the lines from line 30 to the last line are to be deleted in the above
program, enter the following.

DELETE 30 © &
Also, line 30 and after are deleted by:

DELETE 250 &)

If there is no line 25, line 30, which is closest to that number, and all of
the following lines are deleted.

DELETE — line number &)

This command deletes the lines from the beginning of the program to a
specified line number. As an example, enter the following.

DELETE O 40 &

Check the listing with &) , to determine that lines 10—40 were
deleted. The same result can be realized by entering the following.

DELETE @ 47 &)

Again, though there is no line 47, the lines from the beginning of the
program to the nearest line inside of 47 are deleted.
[4] DELETE line number 1 — line number m &)

To delete the lines from line 20 to line 40 from the previous program,
enter the following.

DELETE 20 @40 &

m Attempting to use the DELETE command in a program protected by
the PASS command will result in a PR error.

® |ncluding a fractional part in the line number will result in an SN error.

m |f n is greater than m in item (4] above, or if a specified line number
does not exist, nothing will be deleted.

@ NEW, NEW ALL, PASS

133



CHAPTER 4 COMMAND REFERENCE

EDIT

Function Allows a program to be modified.
EDIT
Format EDIT In (1< In < 9999)

The EDIT command is used to edit a program for deletions, additions,
corrections, etc.

The first line of a program is displayed by EDIT & , and the cursor
appears at the end. Move this cursor to the position where a correction
is to be made with &, s or & , and perform correc-
tions with or o -

® Using The Edit Keys

=, e ........ Moves the cursor to the right and left. Holding
down either key will move the cursor in the re-
spective direction until the end (beginning) of the
line is reached.

)N & ...... The cursor can be moved up and down by press-
SHIFT ing the key and the Cursor key at the same
time.
(3) g ......... If the key is held down, characters are continuous-
ly deleted until the key is released.
(4) .. If the key are held down, spaces are continuously

generated until the keys are released.

Now let’s edit a program by inputting the following program.

18 PRINT "AUERAGE"
20 INPUT A>B,C

30 H=(A+B+C>-/3

40 PRINT H

50 GOTO 10

134



4-1 MANUAL COMMANDS

(1] Checking A Program List From The Beginning

To display a program from the beginning and correct 1 line at a time, the
following is used.

EDIT &

Next, each time the @] key is pressed, the next line will be displayed.

Checking A Program List From The End (IN REVERSE)

To display line 10 of a program after the program has been listed from
the beginning to line 50, perform the following operation.

Program list displayed (20 INPUT A, B, C
up to line 50. 30 H= (A+B+C) /3
40 PRINT H

50 GOTO 10—

o
Operate Cal four (40 PRINT H )
times until line 10 is 30 H= (A+B+C) /3
displayed as shown on 20 INPUT A B. C

the right.

10 PRINT “AVERAGE"_)

3] Checking A Program From A Middle Line Number

To check a line number in the middle of a program, perform the follow-
ing operation.

EDIT line numberds:ﬂj

After this, the subsequent lines are displayed every time the 3] key is
pressed.

135



CHAPTER 4 COMMAND REFERENCE

[4] using @, 3,
Line 20 and line 30 in the program are corrected as follows.
20 INPUT A,B,C,D

30 H=(A+B+C+D)/4
When you use EDIT &) to list line 20, the display is as follows.

Ready PO
ER & 2 Q) EDIT 20
20 INPUT A, B, C_

In line 20, after entering *‘ , ”” and then **D”’, the correction is completed
by pressing the @] key and line 30 will be displayed.

Ready PO
EDIT 20
e &) 20 INPUT A,B,C,D
30 H= (A+B+C)/3__

To insert “+D” in line 30, provide space for two characters with:

EEEED o e
LI

Pressed together
and press @@ @ &)

® |f the EDIT command is used for a program with a password, a PR
error will occur.
® Edit Mode Release
The Edit Mode is released as follows.
(1) When the key is pressed.
2) When the key is pressed.
3) When incorrect operation is performed.
(4) When there is no program to be displayed.
(5) When the power is turned off.

136



4-1 MANUAL COMMANDS

LIST/LLIST

: LIST: Displays the contents of a program.
Functions LLIST: Prints out the contents of a program.

LIST LLIST

LIST LLIST ALL
LIST LLIST V
Formats LIST LLIST In
LIST LLIST In—
LIST LLIST —in
LIST(LLIST In—im

In, Im : line numbers

(1< In <Im < 9999)

The LIST and LLIST commands are used to view programs stored in the
PB-770. LIST produces the program on the display while LLIST prints
out the program on roll paper.

Not only programs, but registered variables can be listed.

LIST and LLIST commands are utilized as follows.

LIST (LLIST) &)

This command sequentially displays (prints) all of the lines of a program
in the current program area beginning from the first line.

LIST (LLIST) ALL &)

The PB-770 has a total of 10 program areas from PO through P9, each of
which can be used for input of independent programs. This command is
used to display (print) all programs in all of the program areas.

LIST (LLIST) V&

This command is used to display (print) all of the presently used register-
ed variables. Besides registered variables, the array names for arrays
declared using the DIM command can also be displayed (printed).

LIST (LLIST) line number &)

When a line number is specified after LIST (LLIST), that line of the
program in the present program area will be displayed (printed). To
display line 30 of a program located in program area P5, for example,
perform the following key operation:

PROG 5 &) LIST 30 &

137



CHAPTER 4 COMMAND REFERENCE

LIST (LLIST) line number — & (Use the (=) key to enter a “—"")
When the line number is followed by a ‘““—"’, the program in the present
program area will be displayed (printed) from the specified line number
to the end. The following key operation will display the program in the
present program area from line 70 to the end.

LIST70 & &

(6] LIST (LLIST) — line number &)

When the line number is preceded by a ““—’’, the program in the present
program area will be displayed (printed) from the beginning to the speci-
fied line number. The following key operation will display the program
in the present program area from the beginning to line 100.

LIST & 100 &

LIST (LLIST) line number n — line number m &)

In this case, the program is displayed (printed) from line number n to
line number m. Since the program is displayed from the smaller line
number to the higher line number, n must be less than or equal to m.
The following key operation will display from line 50 to line 70 of the
program in the present program area.

LIST 50 @ 70 &

[1] Suspending LIST, LIST ALL Execution

Because the lines of a program are displayed continuously when a
program is listed with the LIST command, it is difficult to confirm
the program content. To overcome this, press the @) key to momentari-
ly stop the display. To resume the program listing, press the &) key
again.

LIST command execution cannot be stopped with o .

When a program listing check is not required, press the key to cancel
LIST or LIST ALL command execution.

Leaving LLIST, LLIST ALL

When a program list is being printed out with the LLIST or LLIST ALL
commands, temporary suspension cannot be performed with the 3] key.
You can only cancel LLIST command execution by pressing the key.

138



4-1 MANUAL COMMANDS

LOAD

Function

Loads a program or data stored on a cassette tape into the
main frame memory.

LOAD

LOAD ALL
Formats LOAD, A

LOAD, M

LOAD, D, address

The LOAD command is used to read back into the PB-770 a program or
data that was stored on a cassette tape by a SAVE command. The file
name that was used during SAVE is now useful. Enter the file name
together with the LOAD command, then the PB-770 automatically
searches for the file name and reads the program from the tape.

If a file name is not specified, the first program or data found is read in.

Explanation

The LOAD command has the following formats.

(1) LOAD
Reads the first program found among those stored by SAVE or
SAVE “file name” into the presently specified program area.
There is no problem even if the program area during “SAVE" and
the presently specified program area are different.

(2) LOAD “file name”
Reads the program that was stored with the same file name into the
presently specified program area. In this case, the program area
during “SAVE” and the program area during “LOAD” can be
different.

(3) LOAD ALL
Reads programs that were stored by SAVE ALL to the same program
areas from which they were stored. Since there is no file name, the
programs found first among those stored by SAVE ALL are read in.

(4) LOAD ALL ““file name”
Reads the programs into the PB-770 with the same file name among
those stored by SAVE ALL “file name”’.

139



CHAPTER 4 COMMAND REFERENCE

(5) LOAD, A/LOAD “file name”’, A
Reads a program into the PB-770 that was stored in ASCII code
(SAVE, A or SAVE ““file name”, A). If there is no file name, the first
program found is read in, and if there is a file name, the program
with the same file name is read in.

(6) LOAD, M/LOAD “file name”, M
Reads a program that was stored by SAVE, A or SAVE “file name”’,
A. The difference between this format and LOAD A, LOAD ‘file
name” A is that reading a program in this format will not erase a
program already in the computer, provided that the line numbers
of the existing program are different from those of the program

read. List C
® Content of P
. Reads List B into PO by LOAD, A. read in by LOAD, A.
List A /
m Program stored List B 100 D=C/2
in P@. mProgram stored 116 PRINT D
10 INPUT A, B e el e 20
5 5 4 100 D=C/2
32 E;‘:;T ) 110 PRINT D List D
120 GOTO 1@
49 GOTO 1090 H Content of P@
read in by LOAD, M.

Reads List B into PO by LOAD, M.
10 INPUT A, B
20 C=A+B
30 PRINT C
40 GOTO 100

100 D=C/2

110 PRINT D

120 GOTO 18

140



4-1 MANUAL COMMANDS

(7) LOAD, D, address
Reads data that wasstored in internal code (SAVE,D,address 1,address
2 or SAVE ‘““file name’’,D,address 1,address 2). Addresses are restricted
to the range of —32769 < address < 65536. See CLEAR for details
concerning addresses.

(1] SAVE and LOAD formats must match.

The format of the LOAD command must correspond to that used for the
SAVE command. Similarly, a program stored with SAVE ALL must be
read with LOAD ALL. The following table shows the relationship be-
tween the LOAD command and SAVE command.

LOAD LOAD LOAD ALL | LOADALL | LOADA | LOAD LOADM | LOAD LOAD,D, LOAD
"file name” "file name" "file name”, "file name”, | address | “file name”,
A M D,address

SavE 0 X X X X X X X X X
SAVE
*HE name® 0 0 X X X X X X X X
SAYERL X X 0 X X X X X X X
SAVE ALL
"Hla name” X X 0 0 X X X X X X
SAVEA X X X X 0 X 0 X X X
SAVE
"Hle name"A X X X X 0 0 0 0 X X
SAVE,D,address 1,
Ay X X X X X X X X 0 X
SAVE™file name",D,
address 1,address 2 X X X X X X X X 0 0
(2] Password

If a program with a password is stored, the password is also stored. A
reference for when programs with a password attached are loaded is as
follows.

(1) LOAD can be performed at any time there is no password stored in
the PB-770. In this case, a stored password exists as a PB-770 pass-
word.

(2) When a password exists in the PB-770, LOAD can only be performed
when the program being loaded has the same password. If the pass-
words are different, a PR error will be generated.

141



CHAPTER 4 COMMAND REFERENCE

Error during LOAD

(1) RW error
This error occurs when a parity error is generated during LOAD. In
this case, clear the program which has been loaded by entering NEW

, and perform loading from the beginning.

(2) OM error
This error occurs when the memory capacity is insufficient. In this
case, clear unnecessary programs, make the first address of the data
area larger, or expand RAM capacity.

¥ SAVE, VERIFY, CHAIN, PUT, GET, PASS

142



4-1 MANUAL COMMANDS

NEW/NEW ALL

Function Program erase.
NEW
Formats NEW ALL

When new program input is performed, it is necessary to erase the pre-
vious program. The commands that erase the previous program are the
NEW/NEW ALL commands.

(1] NEW Command Functions

The NEW command erases a program in a specified program area with
the PROG command used to specify the program area. An attempt to
use the NEW command to erase a program protected by a passward (see
page 144, PASS) will result in a PR error.

Also, variables cannot be cleared (see page 158, CLEAR).

NEW ALL Command Functions

The NEW ALL command erases the programs in all of the program areas
at one time. Since this command is effective when the PASS command
has been executed, careful confirmation should be performed when
it is used.

Not only programs, but all variables are cleared, the program area is set
to PO, ANGLE is set to @ (DEG), and the data area is released (see
CLEAR).

The operation is as follows.

NEW &) or NEW ALL &)

143



CHAPTER 4 COMMAND REFERENCE

PASS

Function Protects a program by assigning a password.

Format PASS “password”

Often a program that was prepared with great effort is erased by mistake,
or is destroyed by writing another program on top of it.

Therefore, important programs are protected with this command to pre-
vent program corrections and erasures from being performed.

(1] PASS Command
The PASS command is utilized by entering:

PASS ‘‘Password with up to 8 characters” @

When this command is used, program corrections and erasures cannot
be performed unless the password is cancelled. (This command cannot
be used in a program.) The following commands cannot be executed.

(1) AUTO

(2) DELETE

(3) EDIT

(4) LIST, LLIST
(5) NEW

Also, a program can not be newly written. The functions of the PASS
command are effective in all of the program areas. Conversely, the PASS
command cannot be assigned to only a single program area. An attempt
to execute any of the above listed commands when the PASS command
has been used will result in a PR error being displayed.

144




4-1 MANUAL COMMANDS

[2]. PASS Command Release

Characters, numerals and symbols can be used for a password with up
to 8 characters. To release a password, make an entry using exactly the
same password as follows.

PASS ‘“’Password with up to 8 characters’’ @

Therefore, if a password is entered and forgotten, the PASS command
function can never be released. Since a password cannot be observed, it
is recommended that something which cannot be forgotten, such as your
name, be used for a password. Also, before password entry is performed,
it is important to confirm that it is correct. If passwords are forgotten,
the only solution is to execute the NEW ALL command.

However, since the programs in all the program areas will disappear, they
should first be stored on a cassette tape using the SAVE command.

@ SAVE, LOAD, NEW

145



CHAPTER 4 COMMAND REFERENCE

PROG

Function Specifies a program area.
PROG numerical value (or numerical expression)
Format < . b .
0 < numerical value (numerical expression) < 10

The PB-770 is provided with 10 program areas (PO—P9) where indepen-
dent programs can be written.
The PROG command is used to specify a program area.

When the power of the PB-770 is turned on, the display will be as follows.

Power ON Ready PO

When the power is turned on, the program area PO is automatically
specified as shown above. Next, let’s specify P9 as the next program
area.

Power ON Ready PO

Pnos@@] PROG 9
© Ready P9

Though a numerical expression can be entered after PROG, a computa-
tion result (X) within the range of ® < X < 10 can also be used.
If it is outside this range, a BS error is displayed.

Examples PROG (100/20) — Specifies P5 with PROGS.
PROG (100/10) — Displays a BS error.
PROG (100/15) — Specifies P6 (The fractional part is
discarded.)

EF GOTO, GOSUB

146



4-1 MANUAL COMMANDS

RUN

Function Executes a program.

RUN
Formats | RUN In (1 < In £ 9999)

The RUN command is used to execute a program in the presently
specified program area.

The RUN command has the following two formats.

(1) RUN &
Starts program execution from the first line of the specified program
area. Execution is performed in a sequence with the smallest line
number first.

(2) RUN line number &)
Starts execution from the line number after RUN. If the specified
line number does not exist, execution starts from the nearest line

number larger than the specified line number.

Execution can be started from the beginning of any program in a pro-
gram area without using the RUN command as follows.

Programs PO—P9 can be executed by pressing the key and any key
from (@) ~ (s)at the same time.

147



CHAPTER 4 COMMAND REFERENCE

Function Stores a program on cassette tape.

SAVE

SAVE ALL

SAVE, A

SAVE,D, address 1, address 2

Formats SAVE ““file name”’

SAVE ALL “file name”

SAVE “file name” A

SAVE ‘“file name” D, address 1, address 2

The SAVE command is used when a program is stored on cassette
tape.
This command has the following formats.

(1) SAVE ......... Stores in binary code format a program from a
presently specified program area.

(2) SAVEALL..... Stores in binary code format the programs of all
program areas.

(3) SAVEA ....... Stores in ASCIl code format a program in a

presently specified program area.

(4) SAVE, D, address 1, address 2
Stores in binary code format the contents from
address 1 to address 2 of the memory. The range
of the addresses is —32769 < address 1 < address
2<65536. See CLEAR for information on
addresses.

® SAVE in ASCII code format requires more time and uses more tape
than SAVE in binary code format (internal code format).
However, it is necessary to use SAVE in ASCII code format to exe-
cute LOAD, M (see LOAD command).

148



4-1 MANUAL COMMANDS

Assigning file names to each program stored on cassette tape makes pro-
gram handling easier.

[1] File Names

SAVE “file name”

SAVE ALL “file name”

SAVE “file name”, A

SAVE “file name”, D, address 1, address 2

e Although any character or symbol can be used as a file name, 8
characters or less must be used.

® For a program with a password, the actual password is also output as
data.

(2] Recording Tape Counter Reading

When you press the @) key with the cassette tape recorder in the
record mode, recording starts. The automatic remote function stops the
tape when it has terminated. Make a record of the tape counter reading
for recording start and end.

Confirmation

Confirm if cassette tape recording was correctly performed using the
VERIFY command (see page 153, VERIFY). If it is not correctly re-
corded, perform the SAVE operation again.

149



CHAPTER 4 COMMAND REFERENCE

File Attributes

The file attribute names of programs or data which have been

stored by SAVE or PUT are displayed when they are loaded to the
computer by LOAD or GET.

Operation for output Display during loading
SAVE PF B
SAVE ALL AF B
SAVE, A PF A
SAVE, D, address 1, address 2 DF B
SAVE “ABC” ABC PF B
SAVE ALL “ABC” ABC AF B
SAVE “ABC”, A ABC PF A
SAVE “ABC”, D, address 1, address 2 ABC DF B

The file names are displayed as they are.
Meanings of the file attributes are as follows.

Display during loading

PB—=770 PF B
File name  (A)(B) (C)
(A) P : Program
A: All programs
D: Data
(B) File

(C) B: Binary (Internal code format)
A: ASCII (ASCII code format)

150



4-1 MANUAL COMMANDS

SYSTEM

Displays program area status, specified angle unit,
Function | memory capacity, number of remaining usable bytes,
and data area first address.

F ormat SYSTEM

First, input SYSTEM @&J , and a display similar to that shown below
will appear. The actual display will differ somewhat if a RAM expan-
sion pack is used, if programs are stored in the computer, or depending
on how much data area is available.

Enter SYSTEM @) . If there is no program and data is stored in the PB-
770, the following is displayed.

P 90123456789 ANGLE 0
8KB 68718
Ready PO

The following points should be noted concerning each part of the
display.

(1) The P 8123456789 in line 1 indicates whether or not programs are
stored in program areas PO through P9. The program area number
will be marked with a @ when it contains a program.

(2) The ANGLE 0 in line 1 indicates the specified angle unit mode.
ANGLE 0 (DEG) is always specified directly after the unit is turned
ON. (ANGLE 1 = RAD, ANGLE 2 = GRAD)

(3) The 8KB in line 2 indicates the memory capacity. This value will be
diffeétm;cnwhen RAM expansion packs IV‘OR -8) are used.

Quantity emory capaclty
OR-8 None
OR-8 1 1 6KB
OR-8 2 24KB
OR-8 3 32KB

(4) The 6871B in line 2 indicates the number of remaining usable bytes.
This value will be different when RAM expansion packs (OR-8) are
used and when the specified address of the data area is changed.

151



CHAPTER 4 COMMAND REFERENCE

(5) When a data area is specified, the first address of the data area is dis-
played after the number of remaining bytes in line 2. This value also
changes according to the specified address of the data area. When
a data area is not specified, nothing is displayed.

(6) The Ready PO in line 3 indicates that input is possible to program
area PQ. PO is always specified when the unit is turned ON.

¥ ANGLE, CLEAR

152



4-1 MANUAL COMMANDS

VERIFY

. Performs a parity check of programs or data stored on
Function a cassette tape.
VERIFY
Formats VERIFY “file name”

The VERIFY command checks if programs or data stored on a cassette
tape by the SAVE or PUT command are correctly stored.
® This command has the following formats.
(1) VERIFY
Checks the first program found on cassette tape.
(2) VERIFY “file name”
Checks the program with the same file name on cassette tape.

® You can check all programs stored by the 8 formats of SAVE
command (see SAVE) by using VERIFY &) or VERIFY *“file name”
&) . In other words, it is not necessary to specify a format of SAVE
command.

® |f SAVE was not correctly performed, an RW error is displayed. If this
occurs, store the programs again.

The actual procedure is as follows.

Step 1: Tape Rewind — Return the tape on which programs are stored
by the SAVE command to the initial location by using the
tape counter.

Step 2: VERIFY Command Input — If the program has a file name,
enter VERIFY ‘file name” @) , and if it has no file name,
enter VERIFY &) .

Step 3: Press the PLAY button of the cassette tape recorder. When
check starts, either PF B, AF B, PF A, DF B or DF A (see page
150) is displayed. If a program or data was correctly stored,
Ready PO—P9 is displayed and the cassette tape stops. If the
program or data was not correctly stored,an RW error is display-
ed and the cassette tape stops.

153



4-2_ PROGRAM COMMANDS
ANGLE

Function Specifies the angle unit.
ANGLE numerical expression
Format (0<numerical expression < 3)

The angle unit is usually expressed as 30° and 60° and called DEGREE.
However, RADIAN and GRAD are also used in mathematics. The PB-770
can handle any of these units.

The ANGLE command is used to specify the following three angle units.

(1) DEGREE...... (Example) 45°, 90° Input range of x:
—5400° < x < 5400°

(2) RADIAN .. ... (Example) 0.5, 27 Input range of x:
=307 < x< 307

(3) GRAD........ (Example) 300, 1000 Input range of x:

—6000< x < 6000
The relationship between these angle units is as follows.

360 DEG (= 360°) = 2 RAD = 400 GRAD
The angle unit is specified by the ANGLE command as follows.

ANGLE 0 — Specifies DEGREE
ANGLE 1 — Specifies RADIAN
ANGLE 2 — Specifies GRAD

The unit is always set to ANGLE 0 (DEGREE) when the power is turned
on.

SAMPLE PROGRAM
18 REM XXX ANGLE XxXxx 'I;]his plrografmSIdl\ils:t))lavs
. . the value o Y
20 ANGLE Q:PRINT SIN30; using 3 angle units.
30 ANGLE 1:PRINT SINCPIZ/6); All the results are 0.5.
40 ANGLE 2:PRINT SINC100-3)
50 END

154




4-2 PROGRAM COMMANDS

BEEP

Function Generates a buzzer sound.
BEEP

Formats BEEP 0
BEEP 1

BEEP command is provided in the PB-770 to generate a buzzer sound.
There are many ways to use a buzzer sound. For example, when a long
period of time is required for the execution of a program, execution
termination is indicated by the sounding of the buzzer accomplished by
inserting a BEEP command at the position of execution termination.
Also, the fun of a game is increased by using this command.

The BEEP command has the following three formats.
(1) BEEP

Generates a relatively low buzzer sound.

(2) BEEP O
Generates the same sound as BEEP.

(3) BEEP 1
Generates a slightly higher buzzer sound.

SAMPLE PROGRAM

100 REMXXX BEEP XXX

110 IF INKEY$="" THEN 110

120 IF INKEY$="@" THEN BEEP ®
130 IF INKEY$="1" THEN BEEP 1
14@ GOTO 110

This program was prepared to generate low buzzer sounds when is
pressed and high buzzer sounds when QJ is pressed.

155




CHAPTER 4 COMMAND REFERENCE

CHAIN

Function L'oadg a specified program and executes it from the
first line.
CHAIN

Formats | CHAIN “file name”

When a CHAIN command appears during the execution of a program,
program execution is stopped at that point. Then a program with the file
name that was specified by the CHAIN command is loaded from a
cassette tape, and execution is performed from the beginning of the
program.

If there is no file name, the first program found which was stored by
SAVE or SAVE “ file name”’ is loaded.

The CHAIN command has the following two formats.

(1) CHAIN
Loads first PF B found (program stored by SAVE or SAVE ‘“file
name”’) and executes it.

(2) CHAIN “file name”
Loads PF B of specified file name and executes it.

® Since the program is loaded in the presently specified program area,
the previous program is erased with NEW.

® Programs stored by “SAVE ALL” and “SAVE, A" cannot be read in
with the CHAIN command.

® |f a password is attached to a loaded program, the password is also
read in.

® Even when CHAIN is executed, variables are not cleared.

Input Lists 1—3 into program areas P1—P3, then store them on a cassette
tape.

(List1)..... Program that computes the area of a circle.

(File name: “PRO. 1”)
(List2)..... Program that computes the area of a triangle.

(File name: “PRO. 2”)
(List3)..... Program that computes the area of a rectangle.

(File name: “PRO.3”)

156



4-2 PROGRAM COMMANDS

Also, input List 0 into PO and execute it. List 0 is used to select List 1 —
List 3 using the CHAIN commands in lines 60—80, read it into the
PB-770, and then execute the computation.

List @

189 REM CHAIN PRO.OQ

20 CLS :PRINT "AREA CALCULATIONS"

30 PRINT "1CIRCLE 2TRIANGLE 3RECTANGL
g

40 PRINT "SELECT NO.

50 BB$=INKEY$:IF UAL(BB$>>3 THEN 50 E
LSE IF vAL(BB$)><1 THEN 50

60 IF BB$="1" THEN CHAIN "PRO.1"

7@ 1F BB$="2" THEN CHAIN "PRO.2"

88 CHAIN "PRO. 3"

List 1 List 3
190 REM PRO.1 180 REM PRO.3
20 INPUT "RADIUS";:RR 20 INPUT "LENGTH":HH
30 S=PI%RR"2 3@ INPUT "WIDTH";LL
40 PRINT S 40 S=HHxLL
58 END 50 PRINT S

60 END
List 2

10 REM PRO. 2

20 INPUT "HEIGHT";HH
38 INPUT "BASE";LL
40 S=HHXLL-2

58 PRINT S

68 END

157



CHAPTER 4 COMMAND REFERENCE

CLEAR

. Clears all variables.
Function Clears all variables and creates a data area.
Format CLEAR [first address of data area]

The CLEAR command is used to clear all numerical variables and
character variables.

Numerical variables are cleared to @ and character variables are cleared to
“” (null-string). Also, at the same time, registered variables in a program
are deleted, and the defined array variables are deleted.

Since the FOR nesting stack is cleared, a FOR-NEXT loop cannot be
continued.

When the first address of a data area is specified, an area is created to
which data can only be written using the POKE command and from
which data can only be read using the PEEK function. This method is
ideal for the storage of valuable data.

(1) Clearing variables

The program below is used to display data by totalizing the sum of data
and the number of data. However, if the program is executed again after
pressing the key, the correct answer cannot be obtained since the
numerical values assigned to variables S and N at the first execution re-
main. Therefore, the CLEAR command is inserted between line 10 and
line 30 as shown in the program on the right so that a correct answer can
be obtained every time execution is performed.

10 PRINT "TOTAL" 18 PRINT "T0OTAL"

38 INPUT "D=",D 20 CLEAR

40 S=S+D 30 INPUT "D="»D

50 N=N+1 40 S=S+D

60 PRINT "S(";N;")>=";S 50 N=N+1

/0 GOTO 30 60 PRINT "S(";N;“>=";S
70 GOTO 3@

158



4-2 PROGRAM COMMANDS

(2) Creating a data area
First of all, actually create a data area using the CLEAR command.

Assume that the above program is stored in program area PO. Perform
the following key operation:

CLEAR 3000 &)

This will create a data area from address 3000 (10).
Next, check the number of remaining bytes by entering:

SYSTEM &)

CLEAR 3000 &
SYSTEM &

P 9123456789 ANGLE 0
8KB 1615B 3000
Ready PO

The resulting value should be 1615B (bytes), but this value will differ if a
program is stored in other program area or if the RAM area has been
expanded.
Now enter:

CLEAR 5000 &)
and execute the SYSTEM command again.

CLEAR 5000 &I
SYSTEM &

P 9123456789 ANGLE 0
8KB 3615B 5000
Ready PO

Confirm that the number of remaining bytes has increased. In this way
the number of bytes available for BASIC programming or variables is
increased by the amount that the specified size of the data area is de-
creased. Data area creation using the CLEAR command is required when
PEEK and POKE are used to read from and write to the specified add-
resses. Numerical variables and character variables are cleared by the
CLEAR command, but the contents of the data area remain unchanged.
Therefore, it is unnecessary to worry about the data area for normal
programming (when PEEK and POKE are not used). Data stored in a
data area created by specifying an address in the CLEAR command can
be input to/read from a cassette tape much more quickly than PUT/GET
operations using the LOAD, D, address and SAVE, D, address 1, address
2 commands.

159



CHAPTER 4 COMMAND REFERENCE

(3) Specifying the starting address

The allowable range for the starting address of the data area is —32769 <
address < 65536. However, when the starting address is within the sys-
tem area (&H0Q000 through &H@528), and, when a program is stored in
the computer, the address must be larger than the last address of the
program. The value specified for the starting address of the data area and
the actually specified address have the following relationship.

Specified address Value specified for the starting address
(hexadecimal) (decimal)
0000H @, 32768, —32768
2000H 8192, 40968, —24576
4000H 16384, 49152, —16384
6000H 24576, 57344, —8192
TFFFH 32767, 65535, —1

NOTE: 0 through 1320, 32768 through 34088, —32768 through
—31448 are within the system area. Therefore, they cannot be
specified (an OM error will occur).

The usable address ranges for the various RAM capacities are shown
below. It is not necessary to create data areas for programs that do not
use PEEK and POKE. Therefore, when a data area has been created,
release it using a CLEAR command as shown in the table below.

RAM capacity Usable address (decimal) When data area is not created
8KB 08191 CLEAR 8192
16KB 016383 CLEAR 16384
24KB 024575 CLEAR 24576
32KB 032767 CLEAR 32767

In this way the program area and variable area can be used to their fullest
extent. Using a CLEAR command in which the data area address is not
specified does not change the size of the data area.

* If a data area specification is released using NEW ALL & , the address
number is not displayed.

EEF SYSTEM, PEEK, POKE, NEW ALL

160



4-2 PROGRAM COMMANDS

CLS

Function Clears all displays and moves the cursor to the home
position (top left corner).
Format CLS

The CLS command is used to clear the screen and to move the cursor to

the home position at the top left corner.

It is used to clear the screen for a graphic display.

(1) When this command is manually executed, the cursor is displayed at
the (0,1) position.

(2) When this command is executed during program execution, the
cursor is displayed at the (0,0) position.

E=D 5 ANGLE @

18 CLS

28 FOR I=0 TO 360 STEP 12

30 DRAWC(SINIX*15+80,C0SI*15+15)
40 NEXT 1

50 END

This program is used to display the following pattern.

When a pattern is drawn on the screen as shown above, the screen must
be cleared before drawing starts. Therefore, the CLS command is used at
the beginning of the program.

161



CHAPTER 4 COMMAND REFERENCE

DIM

Function Declares an array.

DIM array variable name (subscript) [, array variable

Format name (subscript)]

The DIM command declares an array of the specified name in the memory
area. Variables assigned by DIM (called array variables) include single-
precision numerical arrays, half-precision numerical arrays and string
arrays.

The general format of DIM can be indicated as follows.
DIM array variable name (subscript [ , subscript]) [ , array

variable name ( ... ....
(Maximum value of subscript : 255)

Examples of declaration statements for various arrays are provided as
follows.

Format Classification Example
DIM array variable One-dimensional single-precision DIM A (5)
name (l) numerical array
DIM array variable Two-dimensional single-precision DIM A (2, 3)
name (1, J) numerical array
DIM array variable One-dimensional half-precision DIM A! (5)
name ! (l) numerical array
DIM array variable Two-dimensional half-precision DIM A! (2, 3)
name ! (I, J) numerical array
DIM array variable One-dimensional string array DIM A$ (5)% 20
name$(1)>k N
DIM array variable Two-dimensional string array DIM A$(2, 3)% 20
name$(l, J) kN
% N can be omitted

162



4-2 PROGRAM COMMANDS

I, ] and N are real numbers or numerical expressions with the ranges of
0<1< 256, 0 < ) <256 and 0 < N < 80, in which the fractional part
of numerlcal value is discarded.

An array variable name is one character from among the capital alpha-
betical characters from A to Z.

The maximum dimensional value is 2, which means one-dimensional
arrays and two-dimensional arrays can be specified.

A half-precision numerical array can be specified by placing just
after the array variable name, and a string array can be specified by
placing ‘“ $ "’ just after the array variable name.

A string array, in which a character string of “N’’ length can be assigned,
is declared by placing “ ) N’’. However, if “*&N” is omitted, N=16 (i.e.
an array in which 16 character long strings can be stored).

“ I »

Enter the following program and run it.
10 CLEAR
20 DIM A(2,3),B(2,3)
100 END

An operational expression may or may not be written between line 20
and line 100.

When characters such as Ready PQ appear after program execution,
check the array variable list as follows.

LIST Vv &
AC ) B()
Ready PO
The array variable name assigned by DIM can be confirmed using

LIST V&)

Let’s check the content of each array variable by adding the following
list to the program mentioned above. An array variable must be declared
by DIM before it is used.

163



CHAPTER 4 COMMAND REFERENCE

30 FOR 1 =0 TO 2
40 FOR J =0 TO 3
50 PRINT A(1,J):B(1,J);
60 NEXT J : NEXT |

When you run the program after adding lines 30 to 60, the following
is displayed.

= Execution Example

Q 0 0 0 @ 6 0 0 o O
Q 0 0 0 @ 0 0 0 0 O
o @ 0 O
Ready PO

Here, the contents of 24 array variables, A (0, 0), B (0, 0) through
A (2,3),B (2, 3), are displayed as “0”.

It is important to note that the contents of all the arrays become “0”
when the DIM command is executed.

While the contents of the numerical arrays mentioned above are @, when
string arrays are declared their contents become null-strings in which
nothing is displayed. Null-string means that a character string is empty.
The difference between space-strings and null-strings should be noted. A
space-string is a string that has one space (A$(1)="—") and a null-string
is a string that is empty (A$(1)="").

SAMPLE PROGRAM 1

* Rearrange (sort) program (one-dimensional numerical array).

180 CLEAR
20 DIM D(5>
30 FOR I=1 TO 5
40 PRINT "DATA"; I:;" =";:INPUT DCI)D
5@ NEXT I
60 REM SORT
70 F=0
8@ FOR I=1 TO 4
164



4-2 PROGRAM COMMANDS

30

1009
110
120
130
140
159
160

IF DCINDKDCI+1)> THEN X=DC(I>:DC(I>=D(
[+1):DCI+1)=X:F=1

NEXT I

IF F=1 THEN 20

REM RESULT

FOR I=1 TO 5

PRINT DCI);

NEXT I

END

This program enters 5 numerical data and arranges these data in a se-
quence with the largest value first.

An array is provided from D(0) through D(5) by the DIM command in
line 20, but only D(1) through D(5) are used in this program.

Lines 60 to 110 contain the sort program while lines 120 to 150 contain
the program which displays the sorted result with the largest value first.
It is convenient to use array variables by combining them with the
FOR-NEXT command as shown in the sample program.

SAMPLE PROGRAM 2

* Vertical and horizontal totalization (Two-dimensional numerical

array) s

10
20
30
40
50
60
/9

CLEAR

DIM AC353),X(3)5Y(3)

FOR I=1 TO 3

FOR J=1 TO 3

PRINT "C"s It T3y, ="
INPUT ACI, T

NEXT J:NEXT 1

REM SUBTOTAL

165



CHAPTER 4 COMMAND REFERENCE

80

90
100
110
120
130
140
150
160
170
180
180

FOR I=1 TO 3
FOR J=1 TO 3

XCDH)=XCI>+ACIs I
YCIx=YCI>+ACI, IO

NEXT J:NEXT I

REM RESULT

FOR I=1 TO 3
"XCUS T3 )= XD
S EEPELER (S0

PRINT
PRINT

FOR K=1 TO 500:NEXT K

NEXT I

END

This program assigns the data in Table 1 to a two-dimensional array as
shown in Table 2 in order to obtain vertical and horizontal subtotals
X(1), X(2), X(3), and Y(1), Y(2), Y(3).

Table 1 Table 2
14 9 21 X(1) | [A(1,1) |A@1,2) |AQ,3)] X(1)
35 4 53 X (2) A(2,1) |A(2,2) |A(2,3) | X(2)
6 15 11 X(3) | |AGB,1)[A3B,2) [AB,3) ] x@3)
Y (1) Y (2) Y (3) Y (1) Y (2) Y (3)

Lines 80 to 120 obtain a subtotal while lines 130 to 180 display the

obtained values.

B3 CLEAR, NEW ALL, ERASE, LISTV

166



4-2 PROGRAM COMMANDS

DRAW./DRAWC

. DRAW:  Draws a dot.
Functions DRAWC: Clears a dot.

DRAW (X1, Y1) [—(X2, Y2)]

Formats DRAWC (X1, Y1) [—(X2, Y2))

The DRAW command draws dots or lines on the screen while DRAWC
clears them.

Since not only characters but dots and lines can be displayed on the
screen, many kinds of graphs, etc. can be made with this command.

The ranges of coordinates that can be specified by DRAW (X, Y) or
DRAWC (X, Y) are as follows.

—256.56 < X <255.5 —25655 <Y <25656.5

Since the range of the screen dot coordinates are 0 < X < 159, and
0= Y < 31, the virtual screen shown below can be considered.
(—255.55, —265.5) (255.5, —255.5)
Coordinates that can
be specified.
Screen of the PB-770
(0,0) (159, 0)
(0, 31) (159, 31)
(—255.5, 255.5) (255.5, 255.5)
In this figure, is equivalent to the screen of the PB-770.

The top left corner of the screen is the origin (0, 0).

167



CHAPTER 4 COMMAND REFERENCE

DRAW and DRAWC are used as follows.

DRAW (X1, Y1) Draws a dot at coordinate (X1, Y1).
DRAWC (X1, Y1) Erases the dot at coordinate (X1, Y1).

DRAW (X1, Y1)—(X2,Y2) Draws a line from coordinate
(X1, Y1) to (X2, Y2).

DRAWC (X1, Y1)—(X2, Y2) Erases the line from coordinate
(X1, Y1) to (X2, Y2)

X and Y mentioned above are numerical values, variable names, and
numerical expressions with the following range.

—255.5 <X <255.5 —2555<Y <2555

They are shown on the actual screen rounded off to integers.
The following program draws a rectangle on the screen.

10 REM DRAW
20 CLS
30 DRAW(10,10)—(10,20)—(150,20)-(150,10)—(10,10)
4@ END

A figure can be drawn by providing continuous coordinates with “—"’
as shown in the program above.

SAMPLE PROGRAM

* A program that displays a character magnified two times.

18 CLEAR :DIM AC(Z527):CLS
20 K$=INKEY$

30 IF Ks$="" THEN 20

40 LOCATE 139,:0:PRINT Ks$
50 FOR I=0 TO 7

60 FOR J=0 TO 7

70 ACI, J>=POINTC(I+1525 7>
80 NEXT J:NEXT I

90 FOR I=0 TO 7
168



4-2 PROGRAM COMMANDS

100
110
120
130
140
150
160
170
180

FOR J=B TO 7

IF ACI, J><>1 THEN 160
DRAU(2%I+80, 2% J+3)
DRAUW(2%I+81:2%J+9)>
DRAUN(2%I+8052%J+10)
DRAW(2%I1+81:2%J+10)
NEXT J:NEXT 1

LOCATE B> 1

END

This program uses INKEY$ to enter one character, and first displays the
character at the position which is specified by LOCATE (19,0) as shown
in the figure below.
This character is displayed using dots in a square area with a diagonal
line formed by (152,0)—(159,7) in which the dots that are displayed and
cleared are checked with the POINT function. Then values © and 1 are
assigned to array variable A (1, }).
Using this array variable as data, the character that is magnified is dis-
played in a square area with a diagonal line formed by (80,9)—(95,24).

(80.9)

(95,24)

(152,0)

(159,7)

€ POINT

169



CHAPTER 4 COMMAND REFERENCE

END

Function Terminates execution of a program.

Format END

The END command terminates execution of a program. The nesting
stack (control of FOR-NEXT loop and GOSUB) is cleared by the execu-
tion of an END command. As many END statements as desired can be
placed anywhere in a program.

The END command placed at the end of a program can be omitted.

SAMPLE PROGRAM

500 FOR 1=0 TO 1000
510 K$=INKEY$

520 IF K$="A" THEN 1000
530 IF K$="B" THEN 2000
540 |IF K$="C" THEN 3000
550 |IF K$="D" THEN END
560 NEXT |

570 END

This program is used as part of a menu program.

‘After “A”, “B” or “C” is entered, execution jumps to line 1000, 2000,
or 3000 respectively.

When “D” is entered, program execution is immediately terminated.
However, when key entry is performed with a key other than “A”’~“D”’,
or when no key entry is performed, execution is automatically terminated
after a certain period of time.

EF sToP

170



4-2 PROGRAM COMMANDS

ERASE

Function Releases registered variables and array variables.

Format ERASE variable name [ , variable name]

An ERASE command can release registered variables and array variables
that can be confirmed by LIST V.
Specification of a variable name for release is performed as follows.

Variable names
displayed by a LIST V: AB, AB$, A( ), Al( ), A$( )

ERASE AB, ABS, A, Al, AS

The nesting stack is cleared by execution of the ERASE command, so
this command should never be used within a FOR-NEXT loop. When an
unregistered variable name is specified, execution proceeds to the next
operation.

&F DIm, LISTV

171



CHAPTER 4 COMMAND REFERENCE

FOR~TO~STEP/NEXT

Repeats the execution from FOR to NEXT for a

Function specified number of times.
FOR numerical variable =i TO j [STEP k]
§
NEXT numerical variable (same variable as that of the
Formats FOR statement)
i : Initial value
j: Final value
k: Increment

The FOR-NEXT command repeatedly executes each statement between
the FOR command and the NEXT command for the specified number
of times.

This command has some restrictions as follows.

(1) Variables must be numerical variables.

(2) STEP k can be omitted. In this case +1(STEP 1) is set as the
increment.

(3) A variable or a numerical expression can be used for the initial
value i, final value], and increment k.

4

)

If k>0 and i > ], FOR-NEXT execution is performed only once.
If kK <0 andi<j, FOR-NEXT execution is performed only once.
(6) When a FOR- NEXT execution is performed and execution proceeds

to the following line, the control variable becomes the value of
i + nk which is larger thanj (n = integer).
(7) Nesting of FOR-NEXT loop can be performed up to 6 levels.

FOR A=...... TO.---.-

FOR B=-..... TO..--..
—  FOR =.... TO------
— FOR D=------ TO------

FOR E=------ TO------

FOR F_NK.TO ......

|: processing

NEXT F f

NEXT E
——NEXT D
——NEXT C

NEXT B

NEXT A

172



4-2 PROGRAM COMMANDS

(8) If the interval of a FOR-NEXT loop is crossed, an error (FO error)

occurs.
FOR B=...... TO ......
«ENEXT A
NEXT B

FO error occurs.

(9) When FOR is not executed and NEXT appears, an error (FO

error) occurs.

(10) The variable for the NEXT command cannot be omitted.

(11) If ERASE or CLEAR is executed, an FO error occurs for the follow-
ing NEXT statement because the FOR-NEXT nesting stack is cleared.

(12) The values of the control variables are cleared before the first pass
of all loops. Therefore, the same control variable can be used for
separate (non-nested) loops within the same program without clear-
ing the control variable each time.

(13) A jump into a loop using GOTO or GOSUB statement, etc. cannot
be performed.

The following program is used to demonstrate the change of the variable
depending on the value of the initial value, final value, and increment.

10 INPUT "FOR I=",,"TO",J,"STEP" K
20 PRINT "FOR I=";"TO"J;"STEP" K
30 FOR A=| TO J STEP K

40 PRINT "VARIABLE:A="A

5@ FOR X=1 TO 10Q@:NEXT X

6@ NEXT A

70 PRINT :GOTO 10

173




CHAPTER 4 COMMAND REFERENCE

Several execution examples are provided below.
In the following program, the FOR-NEXT loop has two levels.

10 CLEAR
20 DIM A(9,9)
30 FOR I=1TO 9 —

40 FOR J=1 TO 9

50 A(l,J)=1%J ]d |
6@ NEXT J

7@ NEXT | |

In this example, multiplication is performed and the result is assigned to
array variable A(l, J) between the two FOR-NEXT loops.

Since execution is performed 9 times by the internal FOR-NEXT
loop and execution is performed 9 times by the external FOR-NEXT
loop, a total of 9 x 9 operations are performed.

It should be noted in the above example that the internal loop (]) is
totally enclosed by the external loop (l). This is required whenever loops
are nested. (See item 7 on page 172.)

This also applies to the levels from 3 to 6.

The following program changes the operation by jumping from the
loop depending on the arithmetic result of the FOR-NEXT statement.

10 CLEAR
20 FOR I=1TO 100
30 X=X+1
40 IF X>=1000 THEN 100
50 NEXT |
60 END
100 PRINT I;X
11@ END

This program performs the addition of 1 +2 +3 ... .. , and when the
result exceeds 1000, it jumps to line 100 and displays the value of the
variable at that time along with the addition result.

174



4-2 PROGRAM COMMANDS

Jumping out of a loop using an IF-THEN command can be used.
Jumping out of a loop once using a GOSUB command and returning
with a RETURN command to continue execution can also be used.

The following program provides an example of when there is nothing
to execute between FOR-NEXT.

10 LOCATE 8,2 :PRINT "HIT!";
20 FOR I=0Q0 TO 50

30 NEXT |

40 CLS

50 FOR I=0 TO 50
60 NEXT |

70 GOTO 10

There is no statement to be processed between the FOR-NEXT loop in
lines 20 and 30 and lines 50 and 60. However, the FOR-NEXT command
is executed the specified number of times even in this case.

This command which seems to be nonsense is often used to kill time and
is called a “wait loop”.

In this program, the characters “HIT!"” are repeatedly displayed for a cer-
tain period of time, erased for a certain period of time, and displayed
again for a certain period of time.

As the final value of the variable increases, the waiting time becomes
longer.

SAMPLE PROGRAM

* A program that provides a display increasing the number of ““ % ” by
one on each successive line.
18 CLS

20 N=1

30 FOR I=1 TO N

40 PRINT "x";

50 NEXT I

60 PRINT

78 N=N+1

80 IF N>=280 THEN END ELSE 39
175



CHAPTER 4 COMMAND REFERENCE

This program increases the final value of the FOR-NEXT command
by one each time and increases the number of ‘“*k” displayed by one
each time. The execution example is as follows.

X

XX

XXX

XX %k
XXXk X
XXkXk X

&¥ |IF~THEN~ELSE

176



4-2 PROGRAM COMMANDS

GET

Function Reads data stored on a cassette tape to a variable.

GET variable [ , variable]
GET ““file name” variable [ , variable]

Formats

The GET command is used to read data stored on a cassette tape by the
PUT command to a variable.

The file name can be omitted as shown in the above format, but, in that
case the first file that appears on the cassette tape (MT) is read. The data
that are read can be sequentially assigned to different variables by punc-
tuating the variables with commas.

However, when data is assigned to a numerical variable, the space at
the beginning of the data is ignored.

The following program stores the values of variables A, B, C and D
with the file name “TEST” on a cassette tape.

10 REM PUT MT

20 A=10:B=20:C=30:D=40
30 PUT "TEST" A, B, C, D

40 END

The following example program uses a GET command to read data
stored on a cassette tape with the file name “TEST”.

10 REM GET MT

20 GET "TEST"E, F, G, H
30 PRINT E;F;G:H

40 END

177




CHAPTER 4 COMMAND REFERENCE

In this example, the data A, B, C, and D are read into the variables E, F,
G, and H. An important item is that data are stored on cassette tape in
an A, B, C, D sequence.

Although data are read in an A, B, C, D sequence during cassette tape
playback, the data of A is assigned to E, and data of B is assigned to
F,.... sequentially.

If GET is executed with variables that exceed the variable data stored on
a cassette tape, an error (DA error) occurs because of data shortage.

* A program to store a person’s name and data on cassette tape, and
to read and display a person’s data when a name is entered. (Number
of characters of name and data are both limited to 16 or less.)

18 CLEAR

20 DIM N$(10>,D$C10>

30 INPUT "PUT:0 GET:I END:E";M$
40 IF M$="0" THEN GOSUB 108©
50 IF M$="1" THEN GOSUB 300
60 IF M$="E" THEN END

70 GOTO 30
100 1=0
110 INPUT "“NAME:"3;N$C(ID
120 PUT Ns$CID
130 IF N$C(I>="0" THEN 180
140 INPUT "DATA: "3;D$C(ID
150 PUT D$(CI)

160 I=1+1

170 IF I<10@ THEN 110

180 RETURN
300 J=0
3180 INPUT "NAME:";A$

178



4-2 PROGRAM COMMANDS

320 GET N$CJ>

330 IF N$(J>="@" THEN PRINT "NOT FOUND
":G0TO 380

340 GET D$<CJ)

350 IF A$<ON$CJ> THEN 370

360 PRINT A%$;"=";D$(J>:GOTO 380

370 J=J+1:60T0 320

380 RETURN

This program consists of two subroutines.

Lines 100 to 180 provide a subroutine to store data on a cassette tape,
while lines 300 to 380 provide a subroutine to search for and read data
from a cassette tape.

A name is entered in array variable N$(l), and data is entered in D$(I).
Then storing and reading are performed with these two variables as a
pair.

When “O” is entered for the menu in line 30, the storing subroutine
from line 100 is executed with the input of a name and data continuous-
ly performed. Up to 11 data inputs can be performed. However, since
it is necessary to attach “0” to the end of the last name (to indicate data
end), up to 10 data inputs can actually be performed.

When “I” is entered for the menu in line 30 to search for the name of
a person, then the name and data are read from a cassette tape.

After the name is found, the name and data are displayed and the
program returns to the menu in line 30.

Enter “E” for the menu to terminate the program.

&F PUT, SAVE

179



CHAPTER 4 COMMAND REFERENCE

GOSUB/RETURN

Function Causes a jump to a subroutine and a return to a
main program.
GOSUB line number 1 < line number < 10000
GOSUB PROG n 0sn<10
Formats o
RETURN gaol.r)\dlcates the program area

The GOSUB command causes a jump to a subroutine of a line which
is specified by a variable or a numerical expression. The RETURN com-
mand causes a return from the subroutine to the main program.

Example
Line number Program area
Numerical constant GOSUB 200 GOSUB PROG 4
Numerical variable GOSUB N GOSUB PROG L
Numerical expression GOSUB N X5 GOSUB PROG L/10

The PB-770 allows a jump to a subroutine and a return to a main pro-
gram in other program areas, as well as a jump to a subroutine in the
same program area as shown by the above formats.

In the following program, the execution flow is shown by changing the

layout.
10
20
Main 30
Program 40
50
60

CLS Subroutine (1)

Z$=INKEY$

100 A=ASC(Z%$)
11@ RETURN

IF Z$=""THEW '
GOSuB 100 /Subroutme (2)

GOSUB 200 =——

200 LOCATE 0,2

210 FOR I=0 TO 19
220 PRINT CHR$(A+1);
230 NEXT |

240 RETURN

180




4-2 PROGRAM COMMANDS

Lines 10 to 60 provide the main program, lines 100 and 110 provide one
subroutine, while lines 200 to 240 provide another subroutine.

When the RETURN command is executed as shown by the arrows,
a return is made to the statement following the GOSUB command and
execution of the main program continues.

This program can be rewritten as follows by changing its format slightly.

10 CLS Subroutine (2)
20 Z$=INKEY$ Subroutine (1) | 299 LOCATE 0, 2

30 IF Z$=""THEN 20 |100 A=Asc(z$)|’| 210 FOR =0 TO 19
40 GOSUB 100— _|110 GOSUB 200| | 220 PRINT CHRS(A+1);

 [120 RETURN 230 NEXT |
5@ END 240 RETURN

d

Although the contents of this program is exactly the same as the pre-
viously mentioned program, this program has a double structure in which
subroutine (2) is included in subroutine (1).

Up to 12 nesting levels can be used with the GOSUB/RETURN com-
mands.

Precautions should be taken concerning the following items when
GOSUB/RETURN commands are used.

(1) One subroutine must have at least one RETURN command, and can
have as many as desired.

(2) If the line specified by a GOSUB command does not exist, an error
(UL error) will occur.

(3) When GOSUB PROG n is executed, if a program is not written in
program area n, an error (UL error) will occur in the present program
area.

(4) When there is no GOSUB command for a RETURN command, an
error (GS error) will occur.

181



CHAPTER 4 COMMAND REFERENCE

(5) Up to 12 GOSUB nesting levels can be used. (If there are 13 levels or
more, an error (NO error) will occur.)

(6) When a fraction is included in a line number or program area number
specified with GOSUB, execution is performed with the fraction
discarded.

SAMPLE PROGRAM

* Slot machine game program.

18 CLS

20 GOsuB 2009

30 GOsuB 300

40 GOSuUB 409

5@ LOCATE 3,0

60 PRINT "POINT";N

70 LOCATE @,0:END
200 X=INTC(10%RND>
210 Y=INTC(19%RND>
220 Z=INTC(10%RND>
230 RETURN
300 LOCATE 6,2
318 PRINT X:;" ";¥Y:" "3Z;
320 RETURN
4080 IF X=Y THEN IF Y=Z THEN N=100:RETU

RN

410 IF X=Y THEN N=40:RETURN
420 IF Y=Z THEN N=30:RETURN
430 IF X=2 THEN N=28:RETURN
440 N=0
450 RETURN

182



4-2 PROGRAM COMMANDS

This program displays 3 numerals. If all of the 3 numerals are identical,
100 points are given, and if 2 numerals are identical, 40, 30 or 20 points
are given depending on their locations.

If all 3 numerals are different, @ points are displayed.

Lines 200 to 230 provide the subroutine that generates the 3 numerals
with the RND function, while lines 300 to 320 provide a subroutine that
displays the numerals at the center of the screen, and lines 400 to 450
provide a subroutine that checks the number of points given.

Lines 10 to 70 provide the main program which simply controls each
subroutine and displays the number of points given.

¥ GOoTo

183



CHAPTER 4 COMMAND REFERENCE

GOTO

Function Causes an unconditional jump to a specified line.
GOTO line number 1 < line number < 10000
Formats GOTO PROG n 0<n<10
n : Indicates the program
area No.

The GOTO command unconditionally jumps to a specified line number
or to the beginning of a program in another program area specified by a
variable or a numerical expression.

If the specified line number does not exist, or there is no program in the
specified program area, an error (UL error) will occur.

If a fraction is included in a specified line number or in a specified pro-
gram area number, the fraction is discarded when execution is performed.

Example
Line number Program area
Numerical constant GOTO 500 GOTO PROG 4
Numerical variable GOTON GOTO PROG N
Numerical expression GOTON %5 GOTO PROG N/10

SAMPLE PROGRAM

* Simplified Digital Clock Program.

18 INPUT “"H="3;H,"M=";M,"S=";S

280 CLS
30 IF H<1© THEN LOCATE 8,8:PRINT H;":
“';:G0TO 50

40 LOCATE 7,B8:PRINT H;":";
580 IF M<10 THEN LOCATE 12;8:PRINT M;*"

184




4-2 PROGRAM COMMANDS

"5 :6G0TO 70

60 LOCATE 11,0:PRINT Ms":";

70 IF S<10 THEN LOCATE 1658:PRINT S:"
:"3:6G0T0 90

80 LOCATE 1550:PRINT S;

90 FOR 1I=2 TO 120:NEXT I

100 S=S+1

110 IF S>=6@ THEN 200

120 GOTO 70

200 S=0:M=M+1

218 IF M>=60 THEN 300

220 GOTO 50

300 M=0:H=H+1

310 IF H>=24 THEN H=0

320 GOTO 30

When you run this program, H (hour), M (minutes), and S (seconds) are
requested. After the present time is entered and the &) key is pressed,
time is continually displayed up to seconds.

Since the internal clock of the microcomputer is not used for this
program, it does not show the exact time, but indicates the approximate
time.

If it gains, adjust by increasing the final value of the FOR command in
line 90, and if it loses, adjust by decreasing the final value.

Many GOTO commands are used in this program.

The program creates an infinite loop using GOTO commands in lines
120, 220, and 320.

¥ GOSUB/RETURN, IF-THEN-ELSE

185



IF~THEN~ELSE

Executes the contents after THEN or ELSE depending
on the condition after IF.

Function

conditional line number line number
Formats expression THEN {command } EI'SE{command }

A numerical expression cannot be used as a line number.

The IF-THEN command performs a conditional jump while a GOTO
command performs an unconditional jump.

When the conditional expression is true, the THEN statement is exe-
cuted, and when it is false, the ELSE statement is executed. If there is
not an ELSE statement, the next line is executed.

A line number that represents a branch destination, or a command state-
ment can be inserted in THEN and ELSE statements.

Multistatements can be performed in THEN or ELSE statements using
colons as shown below.

IF conditional expression |TH EN~:~: 'TIELSE ~ e

T T
THEN statement ELSE statement

An |F statement can be inserted in the THEN or ELSE statement as
shown below.

IF conditional expression (1) THEN IF conditional expression (2) THEN
~ ELSE ~ ELSE ~

— Executes when conditional Executes when conditional
Executes when conditional expression (1) is false. expressions (1) and (2) are
expression (1) is true and both true.

when conditional expression
(2) is false.

Examples of IF ~ THEN ~ ELSE statement usage are shown below.

These programs check whether a triangle can be made or not after three
sides are entered.

(1) 10 INPUT "A=";A, "B=";B, "C=";C
20 IF A+B>C THEN 40
30 GOTO 50
40 IF ABS(A-B)<C THEN 60
50 PRINT "NOT TRI":GOTO 10
6@ PRINT "TRI": GOTO 10
186




4-2 PROGRAM COMMANDS

10 INPUT "A=";A, "B=";B, "C=";C
20 IF A+B>C THEN IF ABS(A—B)<C THEN 40
30 PRINT "NOT TRI": GOTO 10

4@ PRINT "TRI" : GOTO 1@

10 INPUT "A=";A,"B=";B, "C=";C

20 IF A+B>C THEN IF ABS(A—B)<C THEN 40

30 PRINT "NOT TRI": GOTO 10

40 IF A=B THEN IF B=C THEN PRINT "E.TRI" : GOT
O 1@ ELSE PRINT "LTRI" : GOTO 10

50 IF B=C THEN PRINT "LTRI": GOTO 10

60 IF A=C THEN PRINT "L.TRI" : GOTO 1@ ELSE
PRINT "TRI" : GOTO 10

Example programs (1) and (2) check whether a triangle (TRlangle) is
formed or not (NOT TRIangle) when three sides A, B, and C are entered.
In example(1),two triangle conditions (A+B>C, IA—BI<C) are checked
in separate lines (line 20 and line 40), while in example (2), they are
checked in one line (line 20).

Also, in example(3), the program checks whether the values form an equi-
lateral triangle (Equilateral TRlangle) or an isosceles triangle (Isosceles
TRlangle), as well as whether they form a triangle (TRI) or not (NOT
TRI).

In example (3), whether a triangle (TRI) is formed or not is checked first
in line 20. If a triangle is not formed, “NOT TRI"” is displayed and a
return is made to line 10.

If a triangle is formed, whether the three sides are equal or not is check-
ed in line 40. If the three sides are equal, “E.TRI" is displayed. If two
sides are equal, “I.TRI"” is displayed, and if all three sides are not equal,
“TRI” is simply displayed in lines 40 to 60, and a return is made to line
10.

187



CHAPTER 4 COMMAND REFERENCE

SAMPLE PROGRAM

* Program to draw a pattern on the screen with dots.

10
20
30
40
50
60
70
80
90
100

CLS

X=0:Y=0:N=1:M=1

DRAW(X,s Y)

X=X+N:Y=Y+M

[F X>=158 THEN N=-1

IF ¥>=31 THEN M=-1

IF X<{=@ THEN N=1

IF Y<(=@ THEN M=1

IF X=1 THEN IF ¥Y=31 THEN BEEP 1:END
GOTO 30

This program determines whether or not the value of the dot coordinates
(X, Y) on the screen is within the screen limitation by the IF-THEN
command (lines 50 to 80) to control whether the values of the X, Y
coordinates are increased or decreased.

When the values of X and Y become X = 1, Y = 31 (line 90), a beep
sound is generated, and the program is terminated.

The next figure shows the execution result.

® Execution Example

188



4-2 PROGRAM COMMANDS

INPUT

Function

Requests data entry (numerical value, character) from
the keyboard to a variable.

INPUT variable [ , variable]
INPUT “prompt”, variable [ , “prompt”, variable]
INPUT “prompt”; variable [ , “prompt’’; variable]

Formats

The INPUT command is used to enter data from the keyboard to a
variable. The basic formats of the INPUT statement are as follows.

Example 1 INPUT A

Example 2 INPUT X, Y, Z

Example 3 INPUT “AGE"”, A
Example 4 INPUT “NAME’’; A$
Example 5 INPUT “X=; X, “Y=";Y

When the INPUT command is executed, the PB-770 displays an input
request message and waits for data input.

For example, when example 1 is executed, *“ ? " is displayed as follows
and the cursor turns on and off at the right of ““? . The data input
setup has been completed.

Ready PO

Display during INPUT % _ (Cursor)
command execution,

Data input is performed by pressing keys. Always press the key or
&) key at the end of data_input. It should be noted that the key
functions the same as the @] key during INPUT statement execution.

189



CHAPTER 4 COMMAND REFERENCE

s Variables that can be used in an INPUT statement are as follows.

[Examples]

Numerical variable ...... INPUT X

Character variable . . ... .. INPUT X$ (Up to 7 characters can be
entered.)

Registered variable ... ... INPUT XY
INPUT XY$ (Up to 16 characters can be
entered.)

Array variable .. ........ INPUT X! (i), Y! (i j)

Half-precision numerical array
INPUT X (i), Y (i)
Single-precision numerical array
INPUT A$ (i), INPUT AS$ (i, j)
String array

(1) Numerical value input
Let’s check INPUT statement usage and functions by using a simple
program.

10 INPUT A Input command. Provides data input to
variable A.

20 PRINT A Output command. Displays the contents
of variable A.

30 GOTO1@......... Jump command. Moves program execu-

tion to line 10.
After inputting this program, enter RUN@ to execute it. “?” is display-

ed. Now, enter 3.6@). If the entry is performed correctly, the same
numerals are displayed again by the PRINT statement as follows.

RUN & 3.6 &) RUN
?3.6

3.6
°—

190



4-2 PROGRAM COMMANDS

A value can be entered by inputting a calculation expression that results
in the value, but this is limited to INPUT statements using numerical
variables.

Let’s confirm this using the previous program.

€ RUNE 100—20/5E) [ Run
?100-20/5
96
?_

(2) Character input
Perform character input by changing the program of (1). The new pro-
gram is as follows.

10 INPUT AS

20 PRINT A%
30 GOTO 10

When character input is performed, a character variable is used as shown
above. When you execute this program, input is requested by the dis-
play of “? " the same as for numerical value input. When entering the
character string ABC, the display becomes as follows.

RUN & aBCc T SO
?ABC
ABC
?_

When the numerical value 123 is entered, 123 is displayed. However,
it should be noted that this 123 is a character string and not a numerical
value.

When data is input to a character variable, it is unnecessary to enclose
the character string with “ . If “ ” is used, the quotation marks
would also be entered as character data.

191



CHAPTER 4 COMMAND REFERENCE

8 Data that can be input to each variable by an INPUT statement.

A. Numerical variable
a. t1x107°% to £9.99999999999 x 10°° and 0
b. Opera;;onal expression for a numerical value (Example: 200 x
(5+2

c. Numerical variable from A to Z (Fixed variable)
d. Registered variable
e. Array variable

B. Character variable

a. Fixed character variable . .. ... .. Up to 7 characters and sym-
bols.

b. Registered character variable .... Up to 16 characters and sym-
bols.

c. Arrayvariable................ Up to 79 characters and sym-
bols.

(3) Multiple variable input
Multiple variables can be used in an INPUT statement. (Multiple INPUT
statements can be arranged in one statement as shown below.)

10 INPUT X
20 INPUT Y ; — 10 INPUT X! Y:, Y4
30 INPUT Z et Punctuate variables

with commas.

When you execute this INPUT statement, *“ ? » is displayed at first to
request the input of the value of X. After the value of X is entered, the
values of Y and Z are requested in turn. After the value of Z is entered,
this INPUT statement is terminated.

192



4-2 PROGRAM COMMANDS

Variables, such as numerical variables, character variables, etc. can be
used with all combinations and sequences in this kind of INPUT state-
ment as shown below.

10 INPUT AS, X

o

However, a
ables.

,”’ (comma) must be used for punctuation between vari-

(4) INPUT statement that displays a message

If a character string enclosed with “ " is inserted between INPUT and a
variable, the character string is displayed as it is. This is called a prompt.
Incorrect input can be reduced by clarifying data for input with this
message.

Input the following INPUT statement and execute it.

10 INPUT "AGE"; A

Then the following is displayed.

€ RUN &) [ RuUN
AGE?_

193



CHAPTER 4 COMMAND REFERENCE

Next, this INPUT statement is changed as follows.
1@ INPUT "AGE", A
When you run this program, the display is as follows.

RUN &) RUN
AGE —

When ““ ? ” (input request display) should appear after a message, a *“ ;'
is used for punctuation between the message and the variable.
This INPUT statement can be changed for input of two or more variables.

1@ INPUT "HEIGHT =" ; X, "WEIGHT =" Y

In effect, this combines the following two INPUT statements into one
INPUT statement.

1@ INPUT "HEIGHT =";X

—10@ INPUT "HEIGHT =";
20 INPUT "WEIGHT=“;Y} T CHT

X, "WEIGHT=",Y

When you run this program, the display is as follows.

RUN & RUN
175 | HEIGHT=?175

65 WEIGHT=9656_

® Number of characters in character string used for a message

The maximum number of characters for a message is 79 including the
line number and INPUT command.

194



4-2 PROGRAM COMMANDS

LET

Function Assigns data to a variable.

Format LET variable = expression

The LET command placed at the beginning of an assignment statement is
generally used in the following formats.

(Example 1) LET A=10 LET A$=“GAMFE"
(Example 2) LET X=SIN (S—-PI/4) LET X$=A%$+8B$

The assignment statement assigns the value of the expression on the right
side of the = sign to the variable on the left side of the = sign. A
numerical expression corresponds to a numerical variable, and a character
expression corresponds to a character variable. If the correspondence is
not correct, a TM error is displayed.

® Numerical value range
A numerical value can be assigned to a numerical variable within the
following range.

—10'%% < numerical value < 10'%
® Character string range

When the left side is a fixed character variable — up to 7 characters.

When the left side is a registered character variable — up to 16

characters.

When the left side is a character array variable — up to 79 characters.

® LET can be omitted.
10 LET A=1 isthesameas 10 A=1

195



CHAPTER 4 COMMAND REFERENCE

LOCATE

Function Specifies the cursor position.

Format LOCATE X, Y 0SX<20, 05Y<4

The display screen of the PB-770 is provided with 20 x 4 display
positions as shown below. Display is generally performed from the
left end of the screen by executing a PRINT statement. However, the
display position can be freely changed using the LOCATE command.

\XO 12345678 910111213141516171819
y

For example, when
you specify LOCATE
10, 3, the display
position is specified
at (10, 3).

w N - O

However, when 3 isspecified for the Y coordinate, the display is scrolled.
To avoid scroll except for LOCATE 19,3 (lower right corner), use a
semicolon at the end of the PRINT statement.

ED  Laa List B

10 X=1 10 X=1

20 X=X+1 20 X=X+1

40 PRINT "X=";X 30 LOCATE 0,0

50 GOTO 20 40 PRINT "X=";X
50 GOTO 20

When you execute List A, the following is displayed.

X=2 Numerals appear continuously
X=3 . from the bottom of the screen
X=4 and disappear toward the top
x=g6  of the screen.

When you add line 30 as shown in List B, the display is changed in such a
way that only the “X = Numeral” is gradually increased at the top left
corner of the screen.

196



o0

POKE

Function | Writes data to a specified address.

4-2 PROGRAM COMMANDS

Format POKE address, data

The POKE command writes data to a specified address. Both the address
and the data are specified by integers. (Fractional values are discarded.)
Addresses and data must be within the following ranges.

—32769 < address < 65536
0 < data < 256

See CLEAR for information on addresses.

CAUTION:

Never write data using POKE in the system area (&HQ000 through
&H0528) or in a user area where programs have been stored. Otherwise,
the computer will not work normally especially when data are written in
the system area. In this case switch the power OFF and then ON again,
and enter NEW ALL @] to clear all the programs and variable contents.

SAMPLE PROGRAM

Write data to a specified address using the following program.

10 REM POKE EXAMPLE

20 INPUT "—32769<ADDRESS<65536", A
30 INPUT "0<=DATAL256", D

40 POKE A, D

50 PRINT PEEK A

B CLEAR,PEEK

197



CHAPTER 4 COMMAND REFERENCE

PRINT/LPRINT

F . PRINT: Performs output to the display.
unctions (| pRINT:  Performs output to the printer.

PRINT expression [ , expression]
Display output PRINT expression [ ; expression]
Formats PRINT $ registered character variable

LPRINT expression [ , expression]

Printer output LPRINT expression [ ; expression]

The PRINT and LPRINT commands are almost the same with the only
difference being that output is either to the display or to the printer.
However, when they are used with the TAB function, some differences
occur.

Different kinds of data such as characters, numerical expressions, all
types of graphic data, and numerical values can be displayed using a
PRINT statement.

As an example, it can be used as follows.

PRINT 1.414 )
PRINTAXB2&)]..... Since A and B are variables,
the result is displayed.

When these PRINT statements are executed, line change is performed
after data is displayed. Run the following program as an example.

10 A=0 :B=3
20 PRINT 1.414
30 PRINT A%XB-2
40 INPUTC

Then the following is displayed.

198




4-2 PROGRAM COMMANDS

3 RUN &) [ RUN

1414
-2

?_ ........... Cursor

A PRINT statement can be made to display a plural number of expres-
sions or character strings using commas ( , ).

10 A=0:B=3
20 PRINT 1.414,A%B-2
30 INPUTC

When you run this program, line change is performed each time data is
displayed, the same as the preceding display.

RUN
1414
-2

Although the display screen of the PB-770 consists of 4 lines, if output
is performed on the 4th line, each line is scrolled up.

10 PRINT 1, 2, 3, 4

20 END
4 RUN 1
1
Ready PO g scrolled up.
= 3 |

Although output is performed with line change using commas, if a
plural number of expressions and character strings are punctuated with
semicolons, they are displayed on the same line as follows.

199



CHAPTER 4 COMMAND REFERENCE

19 A=0:B=0
20 PRINT 1.414;A%xB-2
30 END

RUN
1.414-2
Ready PO

An easy-to-read message can be given using the following method.

10 PRINT "ANSWER="; AXB—2
20 END

RUN
ANSWER=-2
Ready PO

Character and numeral output can both be performed with left justifi-
cation as shown in the previous output examples. However, since the
output of a numerical value is performed by including one position for
a sign, a space occurs where the + sign is omitted when the value is posi-
tive. A LOCATE command and functions such as TAB and USING, with
which the display location and format can be specified, are used with a
PRINT statement.

10 CLS

20 A=1

30 LOCATE 9, 2

49 PRINT A

50 A=A+1

60 |F A<100 THEN 30
70 END

200



4-2 PROGRAM COMMANDS

0 9 19
0 i
| _LOCATE92
9 | 4
3

Numerical values 1 through 99 are displayed in sequence at the location
of the coordinates (10,2) and (11, 2) of the character screen as displayed
above. The space for the sign is displayed at the (9, 2) coordinate point.

1@ CLS

20 A=13:B=5:C=38
30 PRINT TAB(5): A; TAB(10) ;B; TAB(15) ; C

40 END
RUN rSpace for the sign | |
A13 Ab A 38
—TAB (5)—
TAB (10)————
TAB (15)
Q1234 10 15 19

Display is performed starting from the location specified by the TAB
function when using a PRINT statement together with the TAB func-
tion.

Display can be performed with a uniform format in accordance with
the USING function format as shown below.

10 A=3.1415:B=31.415:C=314.15
20 PRINT USING "## #.88" ;. A

30 PRINTUSING "###.#4#",8B

40 PRINTUSING "###.#4#",C

650 FOR I=1 TO 1000 : NEXT |

60 END

3.14

EREPP Rounded to 2 decimal places.

201



CHAPTER 4 COMMAND REFERENCE @—ﬂc GN

s PRINT command expanded function (not available with LPRINT)

(1) Display pattern definition
Display pattern can be defined by including a “$” directly before
registered character variablessuchas$AB#$. At this time, hexadecimal
values (0, 1,2,3,4,5,6,7,8,9,A,B,C, D, E, F) must be assigned
to the registered character variable.

(2) Control code output
CLS and TAB can be executed using the PRINT command. Output is
performed using the CHR$ function as in: PRINT CHR$(A). The
control codes (numerical variable A) and output functions are as
follows.

Code Function

&H02 LINE TOP (Cursor to head of line)
&HO6 LINE END (Cursor to end of line)
&HO7 BEL (Same as BEEP 1)

&HOQ9 TAB (Same as TAB(10))

&HOB HOME (Cursor to the coordinate (9,0)
&HOC CLS (Same as CLS)

&HOD RETURN (Line change)

&H1C — (Cursor one space right)

&H1D < (Cursor one space left)

&H1E T (Cursor one line up)

&H1F ! (Cursor one line down)

§3 LOCATE, TAB, USING, CLS

202



4-2 PROGRAM COMMANDS

PUT

Function Stores variable data on a cassette tape.

PUT variable [ , variable]

Formats | pUT “file name” variable [ , variable]

The PUT command stores variable data on a cassette tape. The format
of the data file to be stored is ASCII. The GET command is used to read
the data file.

1)PUTA[,B,C....]
2) PUT “SALES” A [,B,C....]

As shown in the above format (1), the file name may be omitted. In this
case, the file name should not be specified in the corresponding GET
command. By separating two or more variables with commas, it is pos-
sible to store plural variables as a data file by a single PUT command.
Variables after PUT are stored on a ‘first come, first served’ basis.
Numerical data is output in the same manner as it is output to the screen
when the USING function is not employed.

The following program stores the contents of array variables A(0) to
A(10) with a PUT command. It is assumed that the array variables con-
tain data.

190 REM PUT

20 DIM AC1\D)

30 FOR K=1 TO 10
40 A(K)=K

50 PUT ACKD

60 NEXT K

70 END

203



CHAPTER 4 COMMAND REFERENCE

The following program reads the data stored on a cassette tape into the
PB-770 using a GET command.

1@ REM GET

20 DIM BC(1@>

30 FOR K=1 TO 10

40 GET B(K>

50 PRINT "B(";K;">=";B(K)>
60 NEXT K

78 END

In this example, a FOR-NEXT loop is used to move the contents of
array A to array B. When storing plural data items, pay attention to the
sequence in which they are stored.

G GET,SAVE

204



4-2 PROGRAM COMMANDS

READ./DATA /RESTORE

READ: Reads data from a DATA statement into a
variable.
DATA: Stores data (constants, characters) in a pro-

Functions gram to be read by a READ statement.
RESTORE Specifies the line from which the DATA
statements are read.
READ variable [ , variable]
Formats DATA data [ , data] [, ““character data’’]

RESTORE
RESTORE line number (1 £ line number < 10000)

A READ statement is used with a DATA statement.
When a READ statement is executed, data are read from a DATA state-
ment into variables on a one to one basis.

The following is the simplest example of a READ/DATA statement
program.

10 READ A

20 READ B$

30 PRINT A;B$

40 DATA 7.,"B"

50 END

When you run this program, 7 is assigned to variable A, and “B" is
assigned to character variable B$. The variable and data types must
match.
Since as many variables as desired can be written continuously in a
READ statement, line 10 and line 20 can be written in one line as
follows.

10 READ A, B$

It makes no difference whether character data is enclosed with double
quotation marks or not as follows.

205



CHAPTER 4 COMMAND REFERENCE

40 DATA 7, B

However, if data is not enclosed with double quotation marks, spaces are
ignored as data. Therefore, if a space is required, it must be enclosed
with double quotation marks.

D [} non A ||,
ATA 7, " T T~ This space is ignored.

NOTE: Spaces after data are not ignored. Therefore if a space is provided
after a numerical value, an ST error occurs.

DATA 1,2, , 3,4
T T These spaces are not ignored.

Double quotation marks and commas cannot be written in character

data except for the above format.

A DATA statement that does not include any data is read as a null string.
DATA , , isregardedas DATA "",”" ""

Although variables in a READ statement must correspond to DATA

statements on a one to one basis, any number of variables or data can be

placed in each statement.

10 CLEAR
20 DIM C(10)
30 READ A, B
40 FOR I1=1TO 10
5@ READ C(l)
60 NEXT I
70 DATA 1,23
80 DATA 4,5,6,7,8,9
90 DATA 10,11,12
When you run this program, data are assigned to each variable as follows.

A B C(1) Cc(2) c(3) C(8) Cc(9) c(10)
Ll l l l l l
1.2 3 4 5 12 11 12

206



4-2 PROGRAM COMMANDS

If the number of data is less than the number of variables to which data
are assigned by a READ statement, an error (DA error) occurs. However,
if the number of data is more than the number of variables, an error
does not occur but the extra data are ignored.

A DATA statement can be placed before a READ statement.

The DATA statement from which data are to be read by a READ state-
ment can be specified using a RESTORE statement.

A RESTORE statement has two different formats, one in which the line
number is written, and another in which the line number is not written.
If the line number is not written, the following READ statement reads
data form the first DATA statement when RESTORE is executed.

10
20
30
40
50
60

READ A, B
RESTORE

READ C, D
PRINT A;B;C:D
DATA 7, 2

END

When you run this program, the assignments performed are A=7,B =2,

C=7and D=2.

DATA statements can also be specified by including the line number.

10
20
30
40
50
60
70

RESTORE 50

READ A, B

PRINT A;B

DATA 3.7, 6.5

DATA 7.1, 9.3 DATA statement specified by RESTORE
DATA 5, 10.2 statement in line 10.

END

207



CHAPTER 4 COMMAND REFERENCE

When you execute this program, A = 7.1 and B = 9.3 are performed as
the assignment.

Variables and numerical expressions can be used for a line number
specification of a RESTORE statement, but the variable or numerical
expression value used must correspond to a line number which includes
a DATA statement.

Precautions should be taken when a READ statement is used in a pro-
gram whose execution moves to a plural number of program areas.

PO 10 READ AB P1 10 READ X, Y
20 GOTO PROG 1 20 PRINT X;Y
30 DATA 1,2,3.4 30 DATA 71,65
40 END

When you execute this program, displayed data are not 71 and 65,
but are 3 and 4. In other words, although the execution of this program
has been shifted to P1 by GOTO PROG 1, the DATA statement of PO is
still used.

This is useful when the DATA statement of a main program is used in
a subroutine.

If it is necessary to read 71 and 65 into X and Y in this program,
specify the line number at the beginning of Program P1 as follows.

5 RESTORE 30

CAUTION: Be sure not to write DATA statements in lines 2200 through

2299 or in lines with 22 in the last two digits of the line

.‘ numbers (e.g. 22, 322, 922). Otherwise, such DATA state-
ments will be ignored.

208




4-2 PROGRAM COMMANDS

REM

Function Provides comments for programs.

Format REM comment statement

Unlike other commands, the REM command does not execute anything.
Since anything can be freely written after REM, a program explanation
can be written at important points in a program as shown below so that
the contents of each part of a program can be understood by looking at
the list.

10 REM *PROCESSING RESULTS*
20 DIM A('I@@)

100 REM #PRINT OUT *

500 END

Since all of the characters and symbols written after REM are considered
to be comments, it cannot be used before other commands to form a
multistatement.

Example: 150 REM % TOTAL* : INPUT N
L 1

Not executed

209



CHAPTER 4 COMMAND REFERENCE

STOP

Function Suspends program execution.

Format STOP

If the STOP command is found in a program during program execution,
a STOP message is displayed and program execution is suspended. The
execution of a program suspended by the STOP command can be re-
started from the instruction following STOP by inputting the CONT
command.

Let’s check the function of the STOP command in the following
program.

10 A=1:B=5
20 C=A+B
30 STOP

40 PRINT C
50 END

When you execute this program, the following is displayed.
STOP PO — 30

This indicates that execution is suspended by the STOP command in

line 30 of program area PO.
In this state, the contents of the variables can be checked as follows.

A — 1 Displays the value of A.
Cc — 6 Displays the value of C.
Also, an optional value can be assigned to a variable by entering
C=0

In actual practice, this command is used to stop execution of a program
at a point where the operation is doubtful to confirm the contents of
variables and aid in debugging.

210



4-2 PROGRAM COMMANDS

(1] Execution can be resumed using CONT even if the following opera-
tions are performed while a STOP command is in effect.
(1) Manual calculation.
(2) Assignment to a variable (Assignment without using LET).
(3) Confirmation of the contents of a variable.
(4) Execution of the following commands.

ANGLE, BEEP, CLEAR, CLS, DIM, ERASE, PRINT, LPRINT,
TRON, TROFF

(2] If the following operations are executed while a STOP command is in

effect, execution cannot be resumed by CONT.
(1) Execution of manual commands (EDIT, SAVE, LOAD, LIST,

etc.)
(2) Execution of PUT/GET.
(3) When an error occurs.

¥ CONT

211



CHAPTER 4 COMMAND REFERENCE

TRON/TROFF

Functi Traces program execution/terminates tracing of
unction program execution.
TRON
Formats TROFE

TRON and TROFF commands are used during program debug.

TRON ....... Specifies the trace mode.
TROFF ...... Releases the trace mode.

When the trace mode is specified, a program is executed while the
present program area number and the line number are displayed as
follows.

Display [—? 1110)

Line number being executed
Program area being executed

Since TRON, TROFF are program commands, they can be used by
writing them in a program, but they are usually used by direct entry.

Input the following program and execute it.

PO

10 BEEP 1

20 GOTO PROG 1
P1

10 BEEP 0O

20 GOTO PROG ©

212



4-2 PROGRAM COMMANDS

When you run this program, two beeps start sounding alternately. Press
the key and then enter TRON @] to specify the trace mode. Now,
run the program. The program area and line number being executed are
continuously displayed as shown below.

(Q:10) (0 :20)
(1:10) (1:20)
(Q2:10) (0 :20)

You will notice that the interval between the BEEP sounds is rather long
in trace mode. This is because execution is much slower in this mode.

In addition, during INPUT statement execution, it stops by displaying
“?” after the [area number, line number]. And, the result is displayed
during PRINT statement execution. This command is very convenient
during debug because the program execution process can be traced.

213



4-3_NUMERICAL FUNCTIONS
SIN

Function Gives the sine of X (Sin X).

Format SIN numerical expression
orma —5400° < Numerical expression < 5400°

The SIN function is used to compute Sin X.
Any one of 3 angle units (DEG, RAD, GRA) can be selected.
When the power is turned on, the angle unit is set to DEG (degree).

SIN X computation is performed using DEG (degree).
5 ANGLE ©
1@ PRINT SIN30
20 PRINT SIN45
30 PRINT SINS@
50 END

When you run this program ( @@ ® &) ), the results for SIN 30, SIN
45 and SIN9O flow across the display and disappear.
Run this program again after adding the following line.

25 STOP
Now the results for SIN30 and SIN45 are displayed and stopped.
Execution Example 0.5

©.7071067812
STOP PO-25

To continue, enter either CONT & or @] , and the next result
(SIN90) will be displayed. (See page 131.)

Execution Example 1

Ready PO

214



4-3 NUMERICAL FUNCTIONS

The following program allows you to select one of the angle units (DEG,
RAD, GRA) and compute SIN X.

18 REM SIN X EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

40 INPUT "SIN X:X=";X

50 PRINT "SIN";X;"=";SINX
60 STOP

78 END

When you run this program, the angle unit is requested first as follows.
ANGLE =?
Next you should specify the angle unit as follows.

ANGLE 0 -~ DEGREE
ANGLE 1 - RADIAN
ANGLE 2 - GRAD

RADIAN is selected as an example.
Enter 1.

SINX X=? is now requested.

Next, when you input the Radian angle, such as Pl/4, the display result is
as follows.

Execution Example

SIN ©0,7853981634=0.
7071067812
STOP PO-60

215



CHAPTER 4 COMMAND REFERENCE

The angle unit is modified using the ANGLE command as described, and
the input range for each angle unit is as follows.

DEG —5400° < Numerical expression < 5400°
RAD —-30w < Numerical expression <30 7
GRA —6000 < Numerical expression < 6000

When the value of a numerical expression is outside the ranges shown
above, an error (BS error) occurs.

A variable and a numerical expression, as well as a real number (such as
30), can be used for the argument.

When only one real number or variable is used, it makes no difference
whether or not the argument is placed inside parentheses. However,
when a numerical expression is used, the result will differ depending on
whether or not it is placed inside parentheses as follows.

SIN X+Y ..... Add Y to the result of the SIN X computation.
SIN (X +Y) .... Compute the SIN of the result of X + Y.

5 ANGLE, COS, TAN

Memorandum

There are three different ways to express the angle of a trigonometric
function: “Degree (DEG)”, “Radian (RAD)"” and “Grad (GRA).”

DEG......... 1° is 1/360 of the circumference of a circle.
RAD......... 1 rad. is 1/2m of the circumference of a circle.
GRA......... 1 grad is 1/400 of the circumference of a circle.

Degree and radian are mainly used, and they have the following relation-
ship.
1° =7 /180rad = 3.141592654,180 rad

216




4-3 NUMERICAL FUNCTIONS

COS

Function Gives the cosine of X (Cos X).
COS numerical expression
Format —5400° < Numerical expression < 5400°

The COS function is used to compute COS X.

The angle units, X argument input range, and precision for COS X are
exactly the same as for SIN X,

Provide input to a program in which COS X is used.

1@ REM COS X EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

4@ INPUT "COS X:X=";X

50 PRINT "COS";X;"=";C0SX
60 STOP

78 END

When you run this program, angle unit input is requested by
ANGLE =?

Next, if the grad angle unit is to be used, input “2”. After this, since the
angle is requested as follows, provide an input of 1355.

COSX X=?
The result will be —0.7604059656.

&F SIN, ANGLE, TAN

217




CHAPTER 4 COMMAND REFERENCE

TAN

Function Gives the tangent of X (Tan X).

TAN numerical expression

—5400° < Numerical expression < 5400°
Format

Except |[numerical expression| = (2n — 1) x 1 right angle

(n = integer)

The TAN function is used to compute TAN X.
The angle units are the same as for SIN X and COS X.

A program to obtain TAN X.

10
20
30
40
50
60
70

REM TAN X EXAMPLE
INPUT "ANGLE=";K

ANGLE K

INPUT "TAN X:X=";X
PRINT "TAN";X; "="; TANX
STOP

END

When you obtain TAN 45 using the DEG angle unit (ANGLE 0), the
result is displayed as

TAN45=1,
Next, if you try to obtain TAN 90, an ““MA error” is displayed.

When the TAN function is used, the value of TAN X suddenly increases

as it approaches 90°.

At TAN 90, the value becomes infinite and computation cannot be
performed.

As a result, an “MA error” was displayed in the above example. When

the value of X is 290 % (2n—1) (n is an integer) in TAN X, precautions

should be taken since an error occurs as mentioned above.

&F SIN, COS, ANGLE

218




4-3 NUMERICAL FUNCTIONS

ASN, ACS, ATN

ASN gives the arcsine (Sin™! X).
Functions | ACS gives the arccosine (Cos™ X).
ATN gives arctangent (Tan™! X).

IXI< 1 (ASNX, ACS X)
Formats ASN X, ACS X, ATN X. IXI< 10 (ATN X)

The ASN, ACS and ATN functions are used to compute the inverse
trigonometric functions: SIN™! X, COS™! X and TAN"! X.

The trigonometric functions (SIN, COS, TAN) are used to obtain the
trigonometric function values of given angles. On the other hand, the
inverse trigonometric functions obtain angles when trigonometric func-
tion values are given.

A program example which uses ASN X is shown below.

180 REM ASN X EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

40 INPUT "ASN X:X=";X

50 PRINT "ASN";X; "=";ASNX
60 STOP

70 END

When you run this program, the following two input requests are dis-
played.

ANGLE=? 0 & ...... Specifies “degree.”
ASNX X=?2 1 & ...... Inputs the trigonometric func-
tion value.

When you input these values, the following is displayed.
ASN 1=90
In other words, the angle X of SIN X = 1 was obtained.

219



CHAPTER 4 COMMAND REFERENCE

Try this program again using ACS and ATN to replace ASN.

These inverse trigonometric functions are specified by ANGLE the
same as for SIN, COS, and TAN.

The degree (DEG) angle range in the computation result is as follows.

—90° < ASN < 90°
0° < ACS £180°
—90° < ATN £90°
Since SIN X and COS X do not theoretically exceed 1, the value of
argument X of ASN X and ACS X must not exceed 1.

&F SIN, COS, TAN, ANGLE

220



7700
Pa‘ 4-3 NUMERICAL FUNCTIONS

HYPSIN/HYPCOS/HYPTAN

Function | Give the hyperbolic functions.

HYPSIN numerical expression
HYPCOS numerical expression
Formats —101%° < Numerical expression< 230.2585092

HYPTAN numerical expression
INumerical expression| < 1919

This series of functions expresses the hyperbolic functions. Each respec-
tive numerical expression is as follows.

HYP SIN sinhx =(e*—e™)/ 2
HYP COS coshx =(e*+e™)/ 2
HYP TAN tanhx =(e*—e™)/ (e*+e™)

T
HYPASN/HYPACS/HYPATN

Function | Give the hyperbolic functions.

HYPASN numerical expression

HYPACS numerical expression
Formats INumerical expression| <5 x 10%°

HYPATN numerical expression
INumerical expression| < 1

This series of functions expresses the inverse hyperbolic functions. Each
respective numerical expression is as follows.

HYP ASN sinh~!x = log (x+/x*+1)
HYP ACS cosh™!x = log (x+,/x°—1)
HYP ATN  tanh!x = Zlogri*+X

1 —Xx

221




CHAPTER 4 COMMAND REFERENCE

SQR

Function Gives the square root of the argument.

SQR numerical expression

Format Numerical expression 2 0

The SQR function is used to obtain a square root as follows.
SQR X =X"05=V X
In this case, the value of X must be larger than 0.

The following program is used to input the area of a circle in order to
obtain the radius.

18 REM SAR X EXAMPLE

20 INPUT "CIRCLE AREA=";S
30 R=SAR(S/PI)

4@ PRINT "CIRCLE RADIUS=";R
50 LOCATE 0,2

60 END

When you execute this program, the following is requested.
CIRCLE AREA=?

Enter 100 as an example. Then 5.641895835 is displayed for the value
of the radius.

If you run this program again and enter a minus value, an MA error
will immediately be displayed because SQR (S/Pi) becomes an imaginary
number when the argument (X) of SQR X is a minus value. To avoid this
error, it is recommended that the following line be added to check for a
positive or negative argument.

35 IF S<O@ THEN 20

222



4-3 NUMERICAL FUNCTIONS

LOG, LGT

LOG X Gives the value of natural logarithm loge X.
Functions | LGT X Gives the value of common logarithm
log;e X

LOG numerical expression

Formats LGT numerical expression

Numerical expression > 0

LOG X computes the value of natural logarithm loge X (InX). In this
case, ‘“‘e” is the base of a natural logarithm.
The value of e is as follows.

e=2718281828......

LGT X computes the value of common logarithm, log,, X. The base of
a common logarithm is 10.

The following program computes LOG X for successive given values
of X.

190 REM LOG X EXAMPLE

20 INPUT "X=";X

30 PRINT "LOG";X;"=";LOGX
40 GOTO 20

When you execute this program,
X=7?
is displayed which requests the value of X for LOG X.

223



CHAPTER 4 COMMAND REFERENCE

If you enter “1”, the value of LOG X is displayed as LOG (1) =0, and
the next value of X is requested.

Execution Example

RUN
RUN & X=%
1 @ LOG 1=0
X=°_

The logarithmic function LOG X has an inverse relationship with
the exponential function EXP X as shown in the following graph.

EXP X

X > 0 is required in a logarithmic function as shown in the above
graph.

If a negative value is entered, an MA error is displayed.

While LOG X is the logarithm of X (which has a base of e), the
logarithm log, X (which has a base other than e), can be computed
by the following formula.

LOG X/LOG Y

Therefore the common logarithm of X, LGT X can also be obtained
with the following formula.

LOG X/LOG 10

224



4-3 NUMERICAL FUNCTIONS

SAMPLE PROGRAM

* This program allows many different logarithmic values to be obtained
when base values are entered.

10
20
30
40

50
60
70

REM X% LOG X/LOG Y %X
INPUT "X="3:X
INPUT "vY=";Y

PRINT "LOG";X:;"~LOG";Y:"=";L0OGX/L0O
GY

LOCATE @53

STOP

END

This program computes the value of logy X with the formula, LOG X/

LOGY.

An execution example is provided below.

Execution Example

RUN & LOG 10,/L0G 2= 3. 3219
190 & 28095
o & STOP PO-60
&E¥F ExP

225



CHAPTER 4 COMMAND REFERENCE

EXP

Function Gives the exponential function eX.
EXP numerical expression
Format —101%0 < Numerical expression < 230.2585092

The EXP function is used to compute the value (eX) of an exponential
function. The value of “e”, which is the base of an exponential function,
is as follows.

e=2.718281828.....

The expression “exponential increase” is often heard in conversation.
The nature of this function is that the value of EXP X suddenly increases
as the value of argument X increases.

Enter the following program to observe the change in the value of EXP
X.

1@ REM Xk EXP X XX

20 INPUT "A=";A

30 FOR X=1 TO A

40 PRINT "EXP";X;'"=";EXPX

50 FOR I=1 TO 380:NEXT I

60 NEXT X

70 END

When you execute this program, a request is made for the maximum
argument value X of EXP X.

A=7?

Enter “10” as an example and press the @] key. The results shown on
the following page are displayed in series.

226



4-3 NUMERICAL FUNCTIONS

Execution Example

EXP 1= 2.718281828
EXP 2= 7.383056033
EXP 3= 20.08553632
EXP 4= 54.539815003
EXP 5= 148.4131531
EXP 6= 403.4287335
EXP 7= 1086.633158
EXP 8= 2380.3573987
EXP 9= 8103.083928
EXP 10= 22026.46573

You will see that the value of EXP X increases suddenly.

Run this program again entering ‘231" for A.

The values of EXP X are displayed in series, and, when the value of
the argument is 231, an MA error occurs.

The input range of the argument X of EXP X is actually

X £ 230.2585.
The value of EXP X with X = 230.2585 is as follows.

Execution Example

EXP 230.2585= 39.9339307006E33

227



CHAPTER 4 COMMAND REFERENCE

ABS

Function Gives the absolute value of the argument.

Format ABS numerical expression

ABS X gives the absolute value of X which is mathematically expressed
as follows.

ABS X = IXI
In regard to the X of ABS X,
When X =0 (value X is positive)...................... ABS X =X,
and when X < 0 (value X is negative) ................. ABS X = —X.

In other words, ABS X computes in a way that allows the result to be-
come a positive number (absolute number).

Now let’s look at a program which uses the ABS function.

10 REM ABS X EXAMPLE

20 READ A,B,C)D

30 X=A:G0SUB 40:X=B:60SUB 40:X=C:(60SU
B 40:X=D:60SUB 48:END

40 PRINT "ABS";X:; "=";ABSX

50 FOR I=1 TO 200:NEXT 1

60 RETURN

70 DATAS5,-5,0,-7.5

This program reads 5, —5, 0 and —7.5 into variables A, B, C and D
respectively using a READ statement and computes ABS A to ABS D.

228




4-3 NUMERICAL FUNCTIONS

The result is displayed as follows.

Execution Example

ABS 5=5
ABS -5=5
ABS ©=0
ABS -7.5=7.5

An operation the same as the ABS function can be performed using the

SGN function.
ABS X

is the same as X %k SGN X

SAMPLE PROGRAM

* A program in which no error occurs when a negative value is entered.

10
20
30
40
50
60
70

INPUT X

S=SAR(ABSX)>
L=LOG(ABSX>

PRINT "SQRX="3;S

FOR I=1 TO 200:NEXT 1
PRINT "LOGX=";L

END

When argument X is a negative value for functions such as SQR X and

LOG X, an MA error occurs.
Therefore, in this program, calculation is performed using the absolute

value of X.

&EF SGN

229



CHAPTER 4 COMMAND REFERENCE

INT

Function Gives the largest integer which does not exceed the
argument value.
Format INT numerical expression

INT X gives the largest integer that does not exceed the value of X.
For example, when the values of X are 3.9, 0.5, —0.5 and —3.9, INT X
is as follows for each of these values.

INT39=3

INT05=0

INT —0.5= -1

INT —-3.9=-4
When the value of the argument is positive, the value after the decimal
point is discarded. However, care should be exercised when the argument
is negative. For example, if the argument is —0.5, the integer is not 0 but
—1 which is the largest integer that does not exceed —0.5.

Let’s try the following program.

18 REM INTX EXAMPLE

20 READ A>B»C

30 X=A:G0SUB 4@:X=B:GOSUB 40:X=C:G0OSU
B 40:END

40 PRINT "INT";X;"=";INTX

50 FOR I=1 TO 200:NEXT 1

60 RETURN

70 DATA5.3,0.5,-3.9

Execution Example

INT 5.3=5
INT 2.5= 0
INT-3.3=-4

230



4-3 NUMERICAL FUNCTIONS

When you run this program, the results shown on the previous page are
displayed.

An INT function graph is drawn as follows by placing values of X hori-
zontally and values of INT X vertically.

INT X Graph
INT X
A
4
3 -
2 e 0 INT X provides ‘“2* for all X
N\ which are located within this
! &0 range.
> X
-3 -2 -1 o2 3
—
@—O— 2 o ! Not included
o : Included
*—0 -3

The difference for positive or negative values can be found using this
graph.

The INT function is often used by combining it with other functions
such as the RND function. In addition, the FRAC function, ROUND

function, etc. are similar to the INT function.

SAMPLE PROGRAM

* A program which displays 5 integers between @ and 9 at random.

1@ FOR I=1 T0 5

20 PRINT INTC10XRND>;
30 NEXT 1

40 END

This program was prepared by combining the INT function with the
RND function as an example.

€3~ FRAC, ROUND, RND

231



CHAPTER 4 COMMAND REFERENCE

FRAC

Function Gives the value of the fractional part of the argument.

Format FRAC numerical expression

FRAC X gives the value of the fractional part of X.
Simple examples are provided as follows.

FRAC 1.123=0.123
FRAC —1.123=-0.123

Simply stated, this function discards the integer part as shown above.

Try the following program by entering many different values.

10 REM FRAC X EXAMPLE
20 INPUT "NUMBER" ;X
30 PRINT FRACX

40 GOTO 1@

SAMPLE PROGRAM

* This program generates a 9-decimal place random number and then
fetches the digits one by one to convert them into single-digit integers.

10 DIM Y(9O

20 X=RND

38 FOR I=1 TO S

40 YCI)=INTC1@%X)

50 PRINT "X=";X

60 PRINT “Y(";I:;")="3YCI)
70 FOR J=1 TO 15@:NEXT I
80 X=FRACC(10%X)

30 NEXT 1

232



4-3 NUMERICAL FUNCTIONS

This program assigns a value generated by the RND function to variable
X

The value is multiplied by 10 and then the INT function is used to
obtain a single-digit integer. The integer is assigned to array variable
Y (1) and then the remaining decimal portion is fetched using the FRAC
function and assigned to X. Then the process begins again. This is re-
peated 9 times and results in 9 single-digit integers assigned to array
variables Y (1) to Y(9).

©..8928802520
LT ; NN \\:\~

-7 ,/ 4 ] \\ AN \\\ = N
-7 /’ // [} \\ N \\\ = ~ -~

Y(1) Y(2) Y(3) V(a) ;

~ S~

Y(8) Y(6) Y(7) Y(8) Y(9)

G INT, RND, ROUND

233



CHAPTER 4 COMMAND REFERENCE

SGN

Function Gives a value according to the sign of argument.

Format SGN numerical expression

The SGN X function judges whether the value of argument X is positive
or negative. SGN X provides three different results as follows.

X> 0 (If positive) ............ SGN X =
X=0(f0) ................. SGN X =0
X <0 (If negative) ............ SGN X = -1

Try the following program.

18 REM SGN X EXAMPLE

20 PRINT "JUDGEMENT OF + OR -"

38 INPUT "“NUMBER" ;X

40 A=SGNX

580 IF A=1 THEN PRINT "+":GOTO 30
60 IF A=0 THEN PRINT "@":GOTO 30
70 IF A=—-1 THEN PRINT "-":GOTO 30

In lines 50 to 70, if the input value is positive, a ‘“+” is displayed, if it is
negative, a ‘="’ is displayed, and if it is @, a “Q" is displayed based on the
value obtained by SGN X.

234



4-3 NUMERICAL FUNCTIONS

SAMPLE PROGRAM

* A program which provides a sine curve.

1@ CLS :FOR X=@ TO 5490 STEP 20
20 S=SGN(SINX>

30 Y=SXINT(SXx10%SINX)

40 IF S<@ THEN 70

50 DRAW(X/4516-Y)

60 GOTO 8@

70 DRAW(X/4;516+Y)

80 NEXT X

9@ END

This program produces SIN X for X=0 to 540° at 20° increments. These
values are multiplied by 10 to produce single-digit values which are
assigned to Y.

At this time the SGN function is taken for SIN X, and, even if SIN X
produces a negative number, the INT function obtains the integer por-
tion only.

In this way, X and Y values are plotted by the DRAW command centered
around coordinates (0,16) — (159, 16). If a value is positive, (X/4, 16—Y)
is plotted, while, if a value is negative, (X/4, 16+Y) is plotted. (See
DRAW.)

When this program is executed, a rough sine curve is plotted as shown
below.

Execution Result

235



CHAPTER 4 COMMAND REFERENCE

ROUND

. Gives the value of numerical expression 1 which is
Function .. et . .
rounded at a position specified by numerical expression 2.
ROUND (numerical expression 1, numerical expression 2)
Format . - N L
Numerical expression 2: Digit position

ROUND (X, Y) gives the value of X which is rounded at the 10Y posi-
tion as follows.

ROUND (12345, 2) = 12000

The numerical value 12345 is rounded at the 10? position which is the
100 position.

You can confirm the operation of the ROUND function with the fol-
lowing program.

10 FOR Y¥=3 TO -5 STEP -1

20 X=12345.67831

38 Z2=ROUND(X>Y>

40 PRINT USING"H####. ###H#H" X, 2Z:PRINT
50 FOR J=0 TO 150@:NEXT J

60 NEXT Y

70 END

This program performs a calculation in which the value Y of ROUND
(X, Y) is continually decreased by 1 from 3 to —5.
The value specified for the 2nd argument Y is

Y1 <100
If it exceeds this range, a BS error occurs.
When a value with a fraction is specified for the value of Y, the fractional
part is discarded.

236



4-3 NUMERICAL FUNCTIONS

Execution Example 12345. 67891
10000. 800RA
12345.6/891
12000. 20000
12345.6./3891
12300. 20000
12345.6/891
12350. 80000
12345.67891

SAMPLE PROGRAM

* This program displays binary 8-bit random numbers and their decimal
values.

10 Y=0
20 FOR I=7 TO @ STEP -1
30 X=ROUNDCRND;-1)

40 Y=Y+(2~ 1) %X

50 PRINT X:

60 NEXT 1

7@ PRINT "=";¥Y

80 LOCATE @;1

90 FOR J=0 TO 500:NEXT J
180 END

Since random numbers generated by the RND function (page 239) are
rounded to one decimal place in line 30, the value of X is@ or 1.

The value of X is generated 8 times to provide an 8-bit random number
that consists of 0s and 1s.

At the same time, the binary 8-bit value is converted to a decimal num-
ber in line 40 which is continuously displayed. An execution example
is provided below.

RUN & RUN
00101001 =41

237



CHAPTER 4 COMMAND REFERENCE

Pl

Function lees the ratio of the circumference of a circle to its
diameter ().
Format Pl

Pl gives approximations of the ratio of the circumference of a circle to

its diameter ().
The value provided for 7 is as follows

m=3.141592654 .. ....

The following program computes the area of a circle,

10 REM PI EXAMPLE
20 PRINT "CIRCLE AREA"
30 INPUT "RADIUS";R

40 S=PIx%R~2
50 PRINT "S=";S
60 END

If you enter 5 as the radius value, the area of the circle is displayed as
follows.

Execution example

S= 78.53381634

238



4-3 NUMERICAL FUNCTIONS

RND

Function

Gives a random number value.

Format

RND

0 < Random number < 1

The RND function gives a 10 digit pseudo random number value that is

larger than @ and smaller than 1.

Random numbers were first required for the simulation of statistical
phenomena or probability models, and are now used for simulations
such as economic forecasts or TV games. In particular, the fun provided
by TV games is largely due to this random number function.

The following

10

20
30
40

50

program generates 10 random numbers.

FOR N=1 TO 1@
PRINT RND

FOR X=1 TO 500:NEXT X

NEXT N
END

These results are only examples. Of course, each time you run this pro-
gram, different random numbers will be generated.

Q.

[N VI VI VRN RN R N

6731506136

. 95398232115
. 205713939883
. 50338057551
. 3063877103

. 1865778556
. 4177075471
.5017414683
. 7551551358
. 45603818328

239



CHAPTER 4 COMMAND REFERENCE

Since a large number of digits are generated, they are not easy to handle
as they are. Therefore, when used for games, etc., random number values

within an appropriate range are obtained by combining this function
with the INT function and ROUND function as follows.
(1) Produce integers up to a desired digit.

INT (RND %10M) ..... L indicates the number of digits.
(2) Produce integers from N to the upper limit M.

ROUND (RND * (M—N), —1) + N . ... N and M are integers. (N<M)

240



e

7700

4-3 NUMERICAL FUNCTIONS

DEG

Function

Converts sexagesimal to decimal.

Format

DEG (degrees [ , minutes [ , seconds] | )

The DEG function converts a sexagesimal value to a decimal value. The
degrees, minutes and seconds of a sexagesimal value have the following
relationship with a decimal value.

DEG (deg., min., sec.) = deg. + min./60 + sec./3600

Input must be within the following range.

IDEG (deg., min., sec.)| < 10190

Input sexagesimal values into the following program to confirm opera-
tion of the DEG function.

18 REM DEG EXAMPLE

20 INPUT "DEG.= "»A
30 INPUT "MIN.= ",B
4@ INPUT "SEC.= ",C

5@ D:DEG(HJBJC)

60 PRINT “DEGC";A;":"3Bs3"»";Cs3">"
70 PRINT "=";D

80 GOTO 20

&F Dms$

241




CHAPTER 4 COMMAND REFERENCE

70

PEEK

Function

Gives the memory contents at a specified address.

Format

PEEK < address _ )
nu merlcal expression

The PEEK function produces the value stored in specified fraction
address. The range of the addresses is given below. Any values included
in the address are discarded.

—32769 < address < 65536

See CLEAR for information on addresses.
The following program displays the contents of an input address.

190 REM PEEK EXAMPLE

20 INPUT "Address = "»A
30 B=PEEK(A>

49 PRINT B

50 GOTO 20

€  CLEAR, POKE

242



4-4 CHARACTER FUNCTIONS
ASC

Function

Gives the decimal code for the first character of a
character string.

ASC “Character string”
ASC (Character variable)

Formats

All characters, numerals, and symbols displayed by the PB-770 have a
number which is called ASCII code (character code).
Examples are as follows.

“A” ... 65
«“g” " 66 (See page 327, CHARACTER CODE TABLE.)
“6" .. ... 54

These character numbers (codes) can be directly determined by the
PB-770 using the ASC function, and can also be determined using the
CHARACTER CODE TABLE.

Enter PRINT ASC ("E") &)

69 is displayed as the
ASCII code value of “E”’.

When an entry is made to determine two character codes or more such
as

PRINT ASC ("EF") &)

only the character code for ‘““‘E”, the initial character, is displayed.
Therefore, to determine the codes for a long character string (such as
“ABCDEF ...."”) serially from the beginning, use a program that
includes the MID$ function (see MID$).

SAMPLE PROGRAM

* A program that displays character codes of input characters.

1@ REM ASCII CODE

20 CLS

30 INPUT "WHICH CHARACTER":A$
40 PRINT ASC(A$)D

50 GOTO 30

243



CHAPTER 4 COMMAND REFERENCE

When character input is performed in line 30, the code is displayed
in line 40. Since execution returns from line 50 to line 30, character
input can be continuously performed to determine codes.

The execution result is as follows.

Execution Example

WHICH CHARACTER®? A
65

WHICH CHARACTER® T
84

WHICH CHARACTER®? R
82

WHICH CHARACTER®? 7
55

WHICH CHARACTER<? 1
49

Since this program indefinitely requests character codes, press the
key to stop execution.

¥ CHR$

244



4-4 CHARACTER FUNCTIONS

CHR$

Function Gives the character represented by a specified ASCII
code.
Format CHRS$ (Code) 0 < Code < 256

The CHR$ function is used to produce the character, number, or symbol
that corresponds to a specified ASCII code.

Enter PRINT CHR$ (66) &

The character “B” is displayed for ASCII code 66.
To determine two characters at one time, enter
PRINT CHR$ (71); CHRS$ (80) &

The characters “G” and “P” which correspond to ASCII codes 71 and
80 are displayed.

Characters that can be entered on the PB-770 by direct key input are
numerals, capital alphabetic characters, small alphabetic characters, and
some symbols. Other characters (such as graphic characters) are display-
ed using CHR$ (see page 327, CHARACTER CODE TABLE). Numbers
(codes) that can be specified by CHR$ are within a range of @ < Code <
256, and the fractional part is ignored.

5 U=0

10 FOR 1=33 TO 254
20 PRINT 1

30 U=U+1

49 FOR J=1 TO 14
50 PRINT CHR$(CI);
60 NEXT J

70 PRINT

80 IF UC3 THEN 110
90 K$=INKEY$:IF K$="" THEN 90
100 U=0
110 NEXT 1
120 END

245



CHAPTER 4 COMMAND REFERENCE

* This program displays the characters for character codes 33 to 254.

When this program is executed, the characters corresponding to ASCII
codes 33 to 35 are displayed by lines 14 characters long, and then the
characters corresponding to the next three sequential ASCII codes are
displayed when any key is pressed. Execution continues until the 254th
character. A display example is shown below.

33

..............

34
35
LES LR E LT
36
$$$$3$3$335339
37
RARAAKAA A ALALLY,
38
EE&&RE &R ER L.

¥ ASC

246



4-4 CHARACTER FUNCTIONS

VAL

Function Converts a character string into a numerical value.
VAL “Character string”
il VAL (Character variable)

VAL is a function that converts a character into a numerical value.
The difference between a character and a numerical value must be
explained in order to understand VAL.

Compare the following two program examples.

Program (1) Program (2)

1@ READ A>B 10 READ A%$,:B$
20 C=A+B 20 C$=A%$+B%
30 PRINT C 30 PRINT C$
40 END 40 END
50 DATA3:5 50 DATA355

In program (1), the numerical data are read into the numerical variables
A and B, and the arithmetic result is displayed by assigning it to C.
The result of program execution is

8
In the above, _ indicates the space for the ‘“ +  sign which is always
omitted.
On the other hand, in Program (2), 3 and 5 are read into the character
variables A$ and BS$, respectively, as character data.
With character variable operations, only addition can be performed. In

this case, the result is assigned to C$.
When this program is executed,

35
is displayed. The result is just the display of a character string. There is
no ‘“—”" sign or blank for the * + ” sign.

247




CHAPTER 4 COMMAND REFERENCE

This blank is very significant, and the difference will be clarified by
comparing the Program (3) and (4) execution examples which follow.

Program (3)

19 FOR I=1 TO 1@

20 READ A

30 PRINT A;

40 NEXT 1

50 END

6@ DATA3,8,-6,7,21
70 DATA223,18,8,1,0

Execution Example 3 8-6 7 21 223 18 8
10

Program (4)

10 FOR I=1 TO 10

20 READ A%

30 PRINT A$;

40 NEXT 1

50 END

60 DATA3,8:-6,/7521
70 DATA223,18:8,1,0

Execution Example 38-672122318810

The VAL function is used to perform calculation as in Program (1) above
using the numerals read in character variables A$ and B$ as in Program

(2).

248



4-4 CHARACTER FUNCTIONS

10 READ A%$,B%

20 C=UAL(A$>+UAL(BS$)
30 PRINT C

40 END

50 DATAS,5

When the program is executed, ‘8" is displayed as for Program (1).
The following precautions should be taken when the VAL function is
used.

(1) When a character other than a numerical value, decimal point, sign
(+, —) or exponent sign “E’’ appear in the character string, everything
following that character is ignored. (Second and subsequent appear-
ances of the exponent sign “E’’ are ignored.)

§2) The first space in a character string is disregarded.

3) When the initial character of a string is not a numerical value, decimal
point, or a sign, or when a character string is only a sign or a decimal
point, @ (zero) is provided.

(4) When more than three numerals exist after an exponent sign “E”,
an SN error occurs.

SAMPLE PROGRAM

* An input subroutine where no error occurs when any key is pressed
as a response to the input request of Menu Nos. 1 to 5.

100 2$=INKEY$:IF 2Z%$="" THEN 100
110 IF 2$<"1" THEN 100
120 IF 2%$>"5" THEN 100
130 GOSUB UAL (Z%$)> %1000

In this program, when a key from 1 to 5 is pressed, the program jumps
to the corresponding subroutine at lines 1000 to 5000, and when a key
other than one of these is pressed, re-input is requested. This subroutine
is convenient to use as an input routine for job selection.

E¥ STR$

249



CHAPTER 4 COMMAND REFERENCE

STR$

Function Converts a numerical value into a character string.

Format STR$ (Numerical expression)

The STR$ function converts a numerical value into a character string.

What are the execution results of Programs (1) and (2)?

Program (1) Program (2)
10 A=25:B=30 1@ A=25:B=30
20 C$=STR$(A+B) 20 C$=STR$(AX+STR$(B>
30 PRINT C$ 30 PRINT Cs$
40 END 40 END

Although these two programs seem to be identical, “55” is displayed in
Program (1) and “25 30" is displayed in Program (2).

In Program (1), the result of the numerical expression A+B is converted
into a character by the STR$ function. In Program (2), the contents of
numerical variables A and B are converted into their respective characters
and are then added. This difference appears in the execution result.

SAMPLE PROGRAM

* Addition practice program.

186 REM ADDITION

20 FOR I=1 TO 5

30 X=INT(RNDX100)>

40 Y=INT(RNDx1@@)>

50 2=X+Y

6@ PRINT STR$(X>; "+";RIGHT$(STR$(Y),L
ENCSTR$CYDI-1)3

70 INPUT "="5A

250



4-4 CHARACTER FUNCTIONS

80 IF A=Z2 THEN PRINT "OK" ELSE 60
90 NEXT 1
100 END

(See RIGHTS, LEN.)

This program produces five addition problems. The operator supplies the
answer for the addition of two integers up to two digits long. The pair of
numbers used cannot be predicted because the RND function is used.

The STR$ function is used in line 6@ where the problem is displayed.
Although
60 PRINT X; "+";Y;

seems to be reasonable without using STR$, a blank for the + sign occurs
before the numerical value as follows.

15+..30="7?
This is a good example of the utility of the STR$ function.

The VAL function is the reverse of the STR$ function.

251



CHAPTER 4 COMMAND REFERENCE

LEFT$

Function

Fetches a specified number of characters from the
left of a character string.

Formats

LEFT$ (‘“‘Character string’’, numerical expression)
LEFTS$ (Character variable, numerical expression)

LEFTS$ is a function that fetches a specified number of characters from
the left of a character string.

10 ABS$="“LEFT RIGHT” ... It should be noted that since the
2@ B$=LEFT$ (ABS$,4) assigned character string is more

30 PRINT B$

than 6 characters, a registered
variable is used (assigned up to
16 characters.).

When this program is executed, LEFT is displayed. In other words, four
characters from the left of the character string in AB$ are fetched.

When 0 is specified as the number of characters to be fetched, a null is
provided, and, when the number of characters specified exceeds the total
length of the string, all characters in the string are fetched. However, if
the number of characters specified exceeds 255, a BS error occurs.

The number of characters to be fetched can be specified by a variable or
numerical expression.

SAMPLE PROGRAM

* A program which serially increases the character string display.

10 AB$="READ LEFT" E xecution Example

20 N=LENCABS$> R

30 FOR I=1 TO N RE

40 BC$=LEFT$C(ABS$, 1> REA

50 PRINT BC$ READ

60 NEXT 1 READ

78 END READ L
READ LE
READ LEF

252



4-4 CHARACTER FUNCTIONS

RIGHTS$

. Fetches a specified number of characters from the
Function right of a character string.
Formats RIGHT$ (‘“‘Character string”, numerical expression)
RIGHTS$ (Character variable, numerical expression)

RIGHT$ is a function that fetches a specified number of characters from
the right of a character string.

10 AB$=“LEFT RIGHT" """ It should be noted that since

the character string is more
20 B$=RIGHT$(AB$,5) than 6 characters, a registered
30 PRINT B$ variable is used.

When the program is executed, RIGHT is displayed which indicates that
five characters from the right of the character string in AB$ are fetched.
When O is specified for the number of characters to be fetched, a null is
provided, and, when the number of characters is specified that exceeds
the total length of the string, all characters in the string are fetched.
However, if the number of characters specified exceeds 255, a BS error
occurs.

The number of characters to be fetched can be specified by a variable or
numerical expression.

SAMPLE PROGRAM

* A program which inserts a character string in a character string.

180 AB$="AM PM"
20 BC$="NOON"
30 CD$=LEFT$(AB$>2)

40 CD$=CD$+" "+BCS e e o
50 CD$=CD$+RIGHT$(AB%, 3> serted in the character
68 PRINT CD$ string in  AB$ using
78 END LEFT$ and RIGHTS$.
Execution Result &E&F LEFTS

AM NOON PM

253



CHAPTER 4 COMMAND REFERENCE

MID$

Function Fetches a specified number of characters to the
right of a specified position within a character string.

MID$ (‘“Character string”’, numerical expression 1,
Formats numerical expression 2)
MIDS$ (Character variable, numerical expression 1,
numerical expression 2)

MID$ is a function that fetches a specified number of characters to the
right of a specified position within a character string. This function is a
kind of combination of LEFT$ and RIGHT$.

MID$ (A$,3,2)

The above expression indicates that two characters should be fetched
from A$. The two characters are the 3rd and 4th from the beginning of
the character string in A$.

10 CLEAR

20 DIM A$(®Q)%k20 = ... Up to 20 characters
30 A$(Q)=“LEFT_CENTER__RIGHT" gasntri?‘eg :ﬁﬁg”_ed to
40 B$=MID$(A$(0).6,6) (See Page 162.)
50 PRINT B$

6@ END

When this program is executed, a string consisting of 6 characters starting
from the 6th character from the left of A$(9) is fetched, and CENTER is
displayed.
The following precautions should be taken when the MID$ function is
used.
When MID$ (character expression, n, m) is entered:

1) Fractional parts of values of n and m are discarded.

2) When mis @ and there is no character to be fetched, a null is provided.

254



4-4 CHARACTER FUNCTIONS

(3) When “m” is omitted, all the characters starting with the nth digit
are provided.

(4) When m exceeds the remaining length of the original string, all charac-
ters starting with the nth digit are provided.

(5) When n is larger than the total length of the original string, a null is
provided.

?6; Variables and numerical expressions can be used for n and m.

7) A BS error occurs when n and m are outside the range of

1<n<256 and 0<m<256

SAMPLE PROGRAM

* A program which produces the frequency count of lower case
alphabetical characters in a composition.

“ ”»

r

1@ DIM A$C@) %50

20 N=0

30 INPUT "DATA=";A%$(D>

40 M=LENCA$(D))

50 FOR I=1 TO M

60 IF MID$CA$C@>, I, 1)="r" THEN N=N+1
70 NEXT 1

89 PRINT N

80 END

In this program, a text entry is made, the number of lower case *“ r’
alphabetical characters is counted and displayed.

Up to 50 characters (including spaces) can be entered in the text.

For example, when the following statement is entered:

Learning __, to __, master __, your__,CASIO __, Personal __, Computer

a check is made of each character to see if itis “ r ”’, and the number of
“r” characters is counted. When the text shown above is entered, “5” is
displayed. Try this yourself.

E3F LEFTS, RIGHTS

255



CHAPTER 4 COMMAND REFERENCE

LEN

Function Provides the length of a character string.

LEN (“Character string”)
LEN (Character variable)

Formats

LEN is a function that provides the length of a character string assigned
to a character variable.

When the following is entered,
CLEAR &)
PRINT LEN (A$) &)

“Q” is displayed.
This is natural because variable A$ is emptied by the CLEAR command.
If:

AB$ = “CASIO __, COMPUTER"" &
PRINT LEN (AB$) &)

is entered, “14" is displayed.
The range of values provided by the LEN function is @ to 79.

SAMPLE PROGRAM

* A character string is displayed with right justification.

10 INPUT AB$

20 L=20-LENCABS$)>

30 LOCATE L»3

49 PRINT AB$;:LOCATE 0,0
50 END

When character string input is performed in this program, the string is
displayed with right justification up to the last column of the screen.
Up to 16 characters can be entered for one line.

256



4-4 CHARACTER FUNCTIONS

INKEYS

Function Provides the entry of 1 character from the keyboard.

Format INKEY$

The INKEY$ function is one type of input command that resembles
INPUT, but its operation is slightly different. With the INKEY$ function,
character data produced only by a single key operation can be input. If
a key is not pressed, nothing (null) is input and execution proceeds to
the next command. It is unnecessary to press the @] key to input data.
The differences between INKEY$ and INPUT are shown below.

Use INKEY$ INPUT

Display during Nothing displayed. Input request message. (“?”

execution display can be eliminated.)

Data input Key pressed during execution. | Data entered when E@ is
(No input without pressing pressed.
key.)

Kinds of data 1 character Digits or number of char-
(All inputs treated as acters within the range of a
characters.) variable such as numerical

values, or characters.

Execution of Immediate execution Suspended until & is

next command | ( @) is unnecessary.) pressed.

Since INKEY$ treats key inputs as characters, it is generally used in the
form of an assignment expression as follows.

Character variable = INKEY$

100 A$=INKEY$

110 IF A$=""THEN 100
120 IF A$="E"THEN END
Q3@  cceeeeeerereeeeriieeeii



CHAPTER 4 COMMAND REFERENCE

When the “E” key is pressed, the program is terminated. When other
keys are pressed, execution jumps to the next command. If no key is
pressed, execution endlessly loops between lines 100 and 1180.

INKEY$ reads all keys except the B key, , and (F] keys. Pressing
the or a3 key together with another key produces the correspond-
ing shift mode or capital mode for the pressed. However, one-key com-
mand operation produces a null.

SAMPLE PROGRAM

* This is a subroutine which assigns a predetermined number of characters
to a character variable.

18 REM INKEY$ EXAMPLE
20 AB$=""

380 FOR I=1 TO 18

40 K$=INKEY$

50 IF K$="" THEN 40
60 IF K$="x" THEN 90
/0 AB$=AB3$+K$

80 NEXT I

S0 PRINT AB$

The number of characters that can be assigned to a character variable is
limited.

If a character string is entered using an INPUT statement, exceeding the
input range generates an ST error. However, in this program, when 10
characters have been entered, no further input is accepted and the pro-
gram moves to the next command (line 90).

Also, to stop input at 10 characters or less, input ““ X ’’ to move execu-
tion to the next line (line 90).

&F INPUT

258



4-4 CHARACTER FUNCTIONS

. Converts a decimal value to a sexagesimal value and
Function - .
expresses it as a character string.
Format DMS$ (numerical expression)

This function converts a decimal value to a sexagesimal value and ex-
presses it as a character string. The range of the numerical expression is

as follows.

INumerical expression| < 10190

Also, when |numerical expression| = 1E6, minutes and seconds are not
displayed (the input value is converted as it is into a character string).

SAMPLE PROGRAM

In the following sample program, input various decimal values to see how

they are converted.

10
20
30
40
015

&F DEG

REM DMS$ EXAMPLE

INPUT "NUMBER= "sA
PRINT "DMS$(";A3;">"
PRINT "= ";DMSs$CA>
GOTO 20

259



7700

CHAPTER 4 COMMAND REFERENCE s 2
i ve eci value exadeci value
Function Converts a decimal value to a hexadecimal value and

expresses it as a character string.

Format HEX$ (numerical expression)

This function converts a decimal value to a hexadecimal value and ex-
presses it as a character string. The numerical expression must be within
the following range. Fractional values are discarded.

—32769 < numerical expression < 65536

The resulting character string is a 4-digit hexadecimal value. Negative
numbers are expressed as two’s complements.

When a number is 32768 or greater, 65536 is subtracted from it and the
result is converted to a hexadecimal value.

In the following program, input decimal values are converted to hexadeci-
mal values and then displayed. Input some values to confirm proper
operation.

10 REM HEX$ EXAMPLE

20 INPUT "NUMBER= ";A
30 PRINT "HEX$C(";A3")>";
40 PRINT "= &H";HEX$(AD
50 GOTO 20

& &H

260



4-5 DISPLAY FUNCTIONS
TAB

Function

Moves the cursor by specified number of digits to
the right.

TAB (Numerical expression)

Format @ < Numerical expression < 80

This function is used in PRINT and LPRINT statements to move the
cursor to a designated position.

10 FOR X=1 TO 5
20 PRINT X;«“~2:";

30 PRINT TAB(10);X"~2
40 NEXT X

When you run this program, the display is as follows.

A272: Lo nd A indicates the space where the
+ sign is omitted.

TAB(10)

When TAB (10) is specified as mentioned above, the cursor is moved by
10 display positions, and subsequent display begins after that.

The range that can be specified by the TAB function is @ to 79 including
variables and numerical expressions.

Fractional values are discarded.

SAMPLE PROGRAM

* Displays a character which corresponds to an ASCII code at a desig-
nated location.

10 FOR 1=33 TO 254
20 PRINT "ASC";
30 PRINT TAB(5>;1;

261



CHAPTER 4 COMMAND REFERENCE

40 PRINT TAB(13); "CHR";
50 PRINT TAB(139);CHR$C(I)D
60 NEXT I

70 END

When you run this program, the display will be as follows.

;'_J
TAB(5)

TAB(13)

TAB(19)

When the & key is pressed, the next code and character are displayed at
the same position.

— Display position

1. Counting the head of the lineas @, count 1 for each space moved
to the right.

2. When a tab position to the left of the present screen position is
specified, the specified position is determined counting from
the beginning of the next line.

3. When a position exceeding the range of 1 screen line is specified,
the specified position is determined counting from the begin-
ning of the current line.

NOTE:

When TAB is used during the LPRINT command, the FA-10 or FA-11
printer can execute a normal TAB function, but this is sometimes not
true when using CENTRONICS printers connected through the FA-4
interface. When the TAB function is executed, the following data is
output to the printer.

(1B)y + (54) + (numerical expression value) + (0OD)+
* (), representsa hexadecimal value.

When TAB is not used with an exclusive printer, use the function code
(Horizontal tab) for that printer.

& USING, PRINT, LPRINT, LOCATE

262



4-5 DISPLAY FUNCTIONS

USING

Function Specifies a display format.

Format USING ““Format character string’’;

The USING function displays a numerical value or a character string in a
PRINT or LPRINT statement in a certain specified format.

When numerical values are displayed in several lines, sometimes digit
or decimal point deviations occur. However they can be arranged pro-
perly utilizing the USING statement as follows.

12 A=185

20 B=267

30 C=135.78

40 PRINT USING "#ifts#tt#ist. #tst" (A

50 PRINT USING "#ifisists#t. ##8t" ;B

6@ PRINT USING "#i#tf#tstst. #sttt" ;C

.70 END

When you execute this program, the display can be easily read as follows.

—18. 500

..135. 780

“# ”and ““ - " as used here are the format character string.
USING can also be utilized for a character string display. The format
character string is specified with &(s).

10 AB$= "CASIO__,COMPUTER" :B$= "!I"
20 PRINT USING "&&&&&&&&&&&&&&&E&" ; ABS;BS
30 END

263



CHAPTER 4 COMMAND REFERENCE

When you execute this program, the display will be as follows.
CASIO__.COMPUTER__ _!"!

The number of characters for the CASIO _ ,COMPUTER is 14, however
since a 16 format character string is used, the two extra characters are
displayed as blanks.

When a USING statement is used, the following precautions should be
taken.

(1) Characters other than # , < , A and & cannot be used in a character
string format.

52; B, -, ~and & cannot be used together.

3) Numerical format specification

1 S Numerical digit specification
. e Decimal point specification
A .. Exponent specification

(a) # can be specified up to 13 digits before the decimal point
and up to 9 digits after the decimal point, and altogether upto13

digits.
gy . 9
13 g
gy gupun
13

b) The position of the minus sign should also be designated by 4.
c) A isspecified at the end of a format character string.

(d) When the fractional portion exceeds the format, output is
performed by rounding off the next digit of a specified digit.
PRINT USING “###.###";12.3456 > 12.346

(e) When the integral portion exceeds the format, % is placed at the
beginning to allow output without following the format.

PRINT USING “##.##°;1234.56 > % _ ,1234.56
(f) Numerical value output is performed with right justification.

264



4-5 DISPLAY FUNCTIONS

(4) & character string format specification
(a) & can be written as much as desired.
(b) If the number of & is smaller than the character string, output
is performed from the beginning by the number of & positions.

PRINT USING “&&&&’’; “ABCDEF’ - ABCD

(c) Character string output is performed with left justification.
(d) Spaces are provided when the number of & is larger than the
character string.

(5) One USING specification is only effective in one PRINT or LPRINT
statement.

56; A USING specification is renewed by a new USING specification.

7) A USING specification can be released by USING ““ ;.

SAMPLE PROGRAM

* A program which outputs a person’s name, the height, and weight in a
certain format to the printer.

100 REM USING EXAMPLE

110 CLEAR :DIM A$C(2)5A!1(2)5,B! (2>

120 FOR I=0 TO 2

130 INPUT "NAME "5>A$C(I>s "HEIGHT <(cmd "
AN (DD

140 INPUT "HEIGHT (Ks> "»B!(ID

150 NEXT 1

160 FOR I=0 TO 2

170 LPRINT TAB(2);USING"&&&ER&&EBR&&&.
g&";A$CI);

180 LPRINT USING"####H##";A! (I "ecm" ;B!

(I "Ka"
190 NEXT 1
200 END
Execytion Example
JOHN SMITH 19@cm 85Kg
BOB JONES 68cm 7Kg
MARY KING 165cm 53Ksg

265



CHAPTER 4 COMMAND REFERENCE

POINT

Function Checks whether a display dot is lit or not.

POINT (X, Y) 0 < X £ 159 (Horizontal position)

0 <Y < 31 (Vertical position)

Format

A character or sign consists of small square dots on the display screen.
For example, the character A is displayed as follows.

Each point is called a dot.
The entire display consists of 5120 dots.

(0.2) X = 160 dots (159.0)
Y =32 dots
(@.31) (159.31)

By assuming that the horizontal direction is the X axis and that the
vertical direction is the Y axis, a dot can be displayed using

Coordinate (X, Y)

The POINT function checks whether a dot (X, Y) is lit or not.
When a dot is lit on the coordinate (X, Y), “1” is given and when it is
turned off, “@” is given.

10 X=0:Y=0
20 A=POINT (X,Y)
30 PRINT A

266



4-5 DISPLAY FUNCTIONS

When you execute this program, if the (0, 0) dot is lit, ““1" is displayed,
and if it is turned off, “0" is displayed.
The following precautions should be taken when the POINT function is
used
; Values rounded at 1 decimal place are used for X and Y.
(2 When X and 'Y exceed the range of the coordinates, an error (BS
error) occurs.

SAMPLE PROGRAM

* Laser gun program.

198 CLS :AA$="2499DBFFFFDB3S3924":BB%$="
YOBVBBBYCIE3EIF’"

1180 X=INT(RNDX/)>+7

120 LOCATE X,B:PRINT $AAS$;: :LOCATE 10,3
:PRINT $BB$;

130 N3$=INKEY$

140 IF Ns$=" " THEN GOSUB 300

158 LOCATE X5@:PRINT " "

160 GOTO 110

3880 DRAW(B3:24>-(8357)

318 A=POINT(83,2>

320 IF A=1 THEN LOCATE ©8,3:PRINT "BEE'
"; :BEEP

330 DRAUC(83:24>-(8357)

340 FOR I=0 TO 30:NEXT I

3580 CLS :RETURN

267



4-6 STATISTICAL COMMANDS/FUNCTIONS
STAT

Function | Allows input of statistical data.

Format STAT [x data value] [,y data value] [; frequency]

The STAT command is employed for the input of statistical data in the

following manner.

(1) STAT x ;n
This format is for the input of single-variable data. The default value
for;nis 1.

(2) STATx ,y ;n
This format is for the input of paired-variable data. The default value
for ; n is 1. If either the value for x or y is omitted, the value entered
immediately before is used (repeat function). Both x and y values,
however, cannot be omitted.

See 3-18 “STATISTICAL FUNCTIONS”.

EF STAT CLEAR, STAT LIST

268



4-6 STATISTICAL FUNCTIONS

STAT CLEAR

Function | Clears the registers used for statistical calculations.

Format STAT CLEAR

This command clears the registers used for statistical calculations. With
this command, the contents of CNT, SUMX, SUMY, SUMX2, SUMY2
and SUMXY all become @. This command should always be used before
beginning a new set of statistical calculations.

&F STAT

STAT LIST/STAT LLIST

Function | Displays or prints basic statistics.

Formats STAT LIST
STAT LLIST

(1) STAT LIST
Displays data names and values for basic statistics in the order of
CNT, SUMX, SUMY, SUMXY,SUMX2, SUMY2,
The output dlsplay can be suspended by pressing the & key.
Pressing this key again will resume output display.

(2) STAT LLIST
The same contents as STAT LIST are output to the printer.

¥ STAT

269



CHAPTER 4 COMMAND REFERENCE

Function | Gives the number of statistically processed data (n).

Format CNT

The CNT function gives the number of statistically processed data.

Reference

Refer to section 3-18 for information on the use of the following
statistical functions.

COR

Function | Gives the correlation coefficient (r).

Format COR

COR gives a correlation coefficient (r) as a numerical expression shown
below.

Nn-2Xy—2x-2y
VN 2x2=(2x)4 In-2y? = (2y)?)

COR:

(n: number of data)

270




4-6 STATISTICAL FUNCTIONS

SUMX
SUMY

SUMX2
SUMY2
SUMXY

SUMX: Gives sum of x data.

SUMY: Gives sum of y data.

Functions | SUMX2: Gives sum of squares of x data.

SUMY2: Gives sum of squares of y data.

SUMXY': Gives sum of products of x data and y data.

SUMX
SUMY
Formats SUMX?2
SUMY?2
SUMXY

These functions give sums, sums of squares and sums of products.
SUMX : 3x
SUMY 3y
SUMX2 : =x?
SUMY2 : 3y?
SUMXY @ Zxy

271



CHAPTER 4 COMMAND REFERENCE

MEANX
MEANY

MEANX: Gives mean value of x data.

Functions | MEANY: Gives mean value of y data.
Formats MEANX
MEANY

These functions give the mean values of data.

MEANX : =x/n
MEANY @ Zy/n

272




4-6 STATISTICAL FUNCTIONS

SDX
SDY
SDXN
SDYN

SDX: Gives sample standard deviation of x data.
Functions SDY: Gives sample standard deviation of y data.
unctions | spxN: Gives population standard deviation of x data.
SDYN: Gives population standard deviation of y data.
SDX
SDY
Formats SDXN
SDYN

These functions give sample standard deviations and population standard
deviations as numerical expressions shown below.

SDX

SDY

SDXN :

SDYN :

/
/

na

Sx?—(=x)?

nin—1)

Sy’ = (Zy)?

nin—1)

x4 =(3x)?

n-

273

(X(Infl)

(yon-1)

(X0n>

(Yon)

(n: number of data)



CHAPTER 4 COMMAND REFERENCE

EOX
EOY

EOX: Gives an estimated value of x in terms of y.

Functions EOY: Gives an estimated value of y in terms of x.

EOX numerical expression

Formats . .
EOY numerical expression

These functions give estimated values as numerical expressions shown
below.
y —LRA

EOX(Y) : = (x)

EOY(X) : LRA+x-LRB (y)

LRA

. LRA: Gives linear regression constant term.
Functions LRB: Gives linear regression coefficient.

LRA
Formats LRB

These functions give linear regression constant term and linear regression
coefficient.
2y—LRB-2x

LRA :
n

n:eSXy —2X+2Yy
n-=x?—(=x)*

LRB :
(n: number of data)

274



4-7 OTHER 70

&H

Function Coqverts a hexadecimal value (up to 4 digits) to a
decimal value.
Format &H hexadecimal value

This function
decimal value.

converts a hexadecimal value up to four digits long to a
The following shows a number of examples.

Hexadecimal Decimal
&H1 1
&HA 10
&H000B 11
&HABCD —21555
&HG Error
&H12345 Error

&H is not considered a function in BASIC.

(1) Manual calculation
Affix a hexadecimal value to &H and press the key.

Example: &H1B7F —- 7039

(2) Program

The following shows a sample program application. A variable cannot
be used after &H, so a hexadecimal character string is affixed to &H
and then the VAL function is used to convert to a decimal value.

18 REM &H EXAMPLE

28 INPUT "&H";A$

38 H=UALC"&H"+A$)

4@ PRINT "&H ";A$;"=";H
5@ GOTO 10

g HEXS$, VAL

275







CHAPTER D

PROGRAM
LIBRARY

PLEASE NOTE:

Programs in this chapter may be used
freely without permission. However,
it must be understood that the
company is not responsible for any
damage or loss as a result of using
these examples.

In the case of executing programs in
this chapter without the optional
plotter-printer, press ‘“N”’ when the
PB-770 requests whether printouts
are made or not by displaying
“PRINTER ON? (Y/N)”.




STOCK PRICE MANAGEMENT AND PROPER
SELLING/BUYING PRICES

This program stores stock prices for the past 53 weeks. After 53 weeks
of data have been input, each time data of a new week is entered, the
data of the oldest week is discarded. Based on the stock price data, the
program outputs the current deviation value and helpful information for
judgment on buying or selling. The program also permits display of the
deviation value and moving average, and graphically displays stock price
fluctuations.

Explanaton | |

First, start the program in PO, and the menu will be displayed on the
screen. Then, enter a number from 1 to 7 given with the menu. Entering
a number other than 1 to 7 causes the menu to be displayed again.

(1) Data input

To input data, press (@) after the menu is displayed, and “Initial? (Y/N)”
is displayed. If you are inputting data for the first time, press the (Y] key.
If you are inputting data following other data, press the (8 key. When
the key is pressed, “CLEAR OK? (Y/N)” is displayed on the screen.
This is to prevent data from being lost by erroneous input. Normally,
press the key.

For initial input, “1) DATA=" is displayed on the screen. Enter
the appropriate stock price and press the key. For the second and
subsequent data inputs, the screen displays “WEEK="'. For input of
data for the 54th and subsequent weeks, the oldest data is sequentially
erased. Therefore, the time required for input becomes a little longer.
To terminate data input, enter a negative number, and the menu will be
displayed again.

(2) Judgment on sell or buy

When menu 2 is selected, “Current Price? ’’ is displayed. At this time,
enter the current stock price, and the program compares the current
stock price with the past data and outputs the deviation value. To
exit from this routine, enter a negative value. The menu will be displayed
again.

(3) Checking reasonable stock price

If new data has been entered using this routine, routine (2) must be
executed before correct values can be output. This is because the two
routines share part of the same variables. Entering a negative number
causes the menu to be displayed again.

278



STOCK PRICE MANAGEMENT AND PROPER
SELLING/BUYING PRICES

(4) Data output

When this menu is selected, all the data stored in memory are displayed
on the screen, then the menu appears again.

(5) Moving average

This routine calculates the moving average. When “No. of movements? *’
is displayed, enter the number of weeks for which the moving average
is to be calculated. The routine calculates the moving average for the
period between the current week and the specified week. After this
routine is executed, the menu is automatically displayed.

(6) Past moving average

This routine permits reviewing the change in moving average in the
past, so this can be used to determine whether the stock price is rising
or falling.

When “No. of movements? ”’ is displayed, enter the number of weeks
for which the moving average is to be calculated. Then, “FROM
WHEN? "’ is displayed. Here, enter the week from which the number
of weeks is to be counted.

Example:

Calculating the moving average for each three weeks, starting from two

weeks ago.
4 Data of two weeks ago
..... 6|92 69|7 685 672 689 (Current price)

1]
The menu automatically appears after executing this routine. Be careful
when entering data in routines (5) and (6) to prevent incorrect values
from being output, especially when the amount of data (the number of
weeks) stored is relatively small.
(7) Graph
This routine graphically displays the stored data to permit easy recogni-

tion of the general trend of the stock price.
The menu display appears again after executing this routine.

Execution Example of a Graph Display

279

MAX =




CHAPTER S5 PROGRAM LIBRARY

|

PQ
18 CLS
20 GosuB 89
38 INPUT "INPUT NO. "3 PR
40 1IF PR>? THEN 10 ELSE IF PR<1 THEN
10
50 IF PR=1 THEN GOSUB PROG 1 ELSE IF
PR=2 THEN GOTO PROG 2
60 IF PR=3 THEN GOSUB PROG 3 ELSE IF
PR=4 THEN GOTO PROG 4
70 IF PR=5 THEN GOSUB PROG 5 ELSE IF
PR=6 THEN GOTO PROG 6 ELSE GOTO PR
oG ?
80 PRINT :PRINT "DATA INPUT 1"
90 FOR I=1 TO 10@:NEXT 1
100 PRINT "PRICE CHECK 2"
1180 FOR I=1 TO 10@:NEXT I
120 PRINT "REASONABLE PRICE 3"
1380 FOR I=1 TO 108@:NEXT I
140 PRINT "DATA OUTPUT 4"
150 FOR I=1 TO 1@@:NEXT I
160 PRINT "MOUING AUE 5"
170 FOR I=1 TO 100:NEXT I
180 PRINT "PAST MOVEMENT 6"
190 FOR I=1 TO 1@@:NEXT 1
208 PRINT "GRAPH DISPLAY 2"
210 RETURN
P1
18 CLs
20 PRINT " X% DATA INPUT xx"
30 INPUT "Initial7C(Y/N)",P$:1IF P$="Y"
THEN GOSUB 200
40 IF P4$="N" THEN A=A-1 ELSE IF P$<{>"
Y" THEN 30
50 A=A+1:G0SUB 300

280



STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYING PRICES

60
70

80

S0
100
110
120
200

210
220
230
240
250
260
300
310
P2
10
20
30
40
50
60
70
80
S0
100

110
120
130
140
P3
10
20

IF A>=53 THEN 80

INPUT “DATA";Z2CA>:IF 2(AX<@ THEN 2
(A>=0:G0TO PROG @ ELSE GOTO 50
INPUT “DATA+":;DZ:C=C+1:A=53:1F DZK
@ THEN GOTO PROG @ ELSE Z2(53>=DZ
FOR B=1 TO 53

2(B-1>=2(B)>

NEXT B

GOTO 80

INPUT “"CLEAR OK7C(Y/ND>",T$: IF T$="Y
" THEN 220 ELSE IF T$="N" THEN 260
GOTO 200

ERASE 2Z:DIM Z2(53)

PRINT "STOCK PRICE "

FOR K=8 TO 58:NEXT K

INPUT "1)DATA";2(1):A=1
P$="Y":RETURN

PRINT "UWEEK=";A

FOR K=8 TO 18:NEXT K:RETURN

CLS
PRINT " %% PRICE CHECK %"
S=0:Q=0
FOR D=8 TO 52
S=S+2(D)>:Q=0+2(D>"2
NEXT D

IF A<S4 THEN S0
E=S,53: U=0-S3%EXE: F=SAR(U,/52)
E=S/A:U=0-A%EXE: F=SAR(U/(A-1))
INPUT "Current Price";Y:IF Y<@ THE
N 140
D=ROUND(50+10%(Y-E>/F, -3
PRINT "Deviation=";D

GOTO 100

GOTO PROG @

CLS
PRINT "%*REASONABLE PRICEX%"

281



CHAPTER 5 PROGRAM LIBRARY

30 INPUT "Deviation="3D:Y=ROUND((D-50
YXF/18+E>-2>:IF D<@ THEN 50
4@ PRINT " PRICE=":Y:G0T0O 30
S0 GOTO PROG ©
P4
18 CLS
20 PRINT " %% DATA OUTPUT XX
30 FOR U=@ TO A-2
40 PRINT "DATA";U+1;"="532CU+1)>
50 FOR K=@ TO 50
60 NEXT K:NEXT U
70 PRINT "DATA END"
80 FOR K=1 TO 2008:NEXT K
9@ GOTO PROG @
PS5
18 CLS
20 PRINT " %% MOUING AUE. Xxx“
380 X=0
4@ INPUT "No. of mouements';N
50 IF A<=53 THEN 100
60 FOR L=53-N T0O 52
70 X=X+2(L)>
80 NEXT L
98 GOTO 1309
100 FOR K=A-N TO A
110 X=X+2(K>
120 NEXT K
130 M=X-N
140 PRINT "MOUING AUERAGE":M
150 FOR K=0 TO 300:NEXT K
168 GOTO PROG @
Pé
10 CLS
20 PRINT "xX PAST MOUEMENT %"
38 INPUT "No. of mouements'; I
4@ INPUT "FROM UWHEN ":0
50 X=0
60 IF A<=53 THEN 110

282



STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYING PRICES

70
80
90
100
110

120
130
140
150
160
170

180
190
200
P72
10
20
30
40
50
60

70
80
30
100
110
120
130
140

FOR J=53-0-1 TO A-0-1

X=X+2CI)D

NEXT J

GOTO 140

FOR J=A-0-1 TO A-0-1:IF A<=J THEN
180

R=X+2CI)D

NEXT J

M=X/1

FOR K=8 TO 100:NEXT K

PRINT "Mouins Ave. "M
0=0-1:X=0:F0OR K=@ T0O 18:NEXT K:GOT
0 60

PRINT " END"

FOR K=0 TO 300:NEXT K

GOTO PROG O

CLsS
PRINT "X% GRAPH DISPLAY Xxx*"
MX=@:FOR MD=1 TO 53

IF Z2CMDY >MX THEN MX=Z(MD)>
NEXT MD

CLS :LOCATE 155 1:PRINT "MAX=":L0C
ATE 14, 2:PRINT INT(MXD
FOR K=1 TQ0 5
P0O=130-K%20: DRAWC(PO, 27>-(P0, 30>
NEXT K
FOR K=1 TO A-1

J1=K%2+10: J2=25-25/MXxZ (K>
DRAWCT1, J2>-CJ1,25)
NEXT K

IF INKEY$="" THEN 148 ELSE GOTO PR
0G o

Number of bytes used: 1872

283



CHAPTERS5 PROGRAM LIBRARY

Example Data

19 weeks ago | 584 | 14 weeks ago | 545 9 weeks ago | 635 | 4 weeks ago 685
18 weeks ago | 580 | 13 weeks ago | 550 8 weeks ago | 652 3 weeks ago 697
17 weeks ago | 579 | 12 weeks ago | 563 7 weeks ago | 673 | 2 weeksago | 685
16 weeks ago | 570 | 11 weeks ago | 589 6 weeks ago | 701 Last week 672
15weeks ago | 562 | 10 weeks ago | 620 5 weeks ago | 692 This week 689
Variable contents
A Data counter J2 Y axis of graph Q Sum of squares of
B ~ D | Counters MD Counter data
DA Character data MX Max. data S Sum of data
Dz Stock price N No. of movements T$ CLEAR OK?
E Average o} Starting week for U Counter
H Deviation value calculating of moving v Variance
J ~ L | Counters (for periods average X Counter
to calculate moving P$ Y or N (Initial?) Z (X) | Stock price
average in P5) PO Graph scale
J1 X axis of graph PR Program selection

284




STOCK PRICE MANAGEMENT AND PROPER
SELLING/BUYING PRICES

(Operatin

Menu display ——————>

Selects
data input.

Press O for initial data
input and ® for addi- —
tional data input.

Press @ to clear the ——
stored data and ® not
to clear them.

(1) Data input

Enter a negative num- —
ber to terminate data
input.

(2) Stock price check

Enter the current stock

price and its deviation _____,
value is displayed based

on the past data.

Entering a negative num-
ber causes the menuto______,
be displayed.

(3) Reasonable stock
price

Enter a deviation value.

The stock price is
displayed.

Entering a negative num-
ber causes the menu to
be displayed.

Step

Key operation

Display

B

DATA INPUT 1

PRICE CHECK 2
REASONABLE PRICE 3
DATA OUTPUT 4
MOVING AVE. 5

PAST MOVEMENT 6
GRAPH DISPLAY 7
INPUT NO.? _

a

* * DATA INPUT * *
Initial ? (Y/N)_

CLEAR OK ? (Y/N) _

B8
LB &

STOCK PRICE
1) DATA? _

WEEK=2
DATA? _

f
INPUT NO. 7?7 _

* % PRICE CHECK * *
Current Price 7 _

Deviation =49.23
Current Price 7 _

f
INPUT  NO.?7 _

* * REASONABLE PRICE * *
Deviation= 7 _

10

PRICE=670.1
Deviation= 7 _

f
INPUT NO.7 _

285



CHAPTERS5 PROGRAM LIBRARY

Step Key operation Display
(4) Data output @ @ * * DATA OUTPUT * *
All data are displayed —— DATA 1=584
and then the menu DATA 2=580
display appears. 12 DATA 3=579
DATA END
!
Menu display—— > INPUT NO.? _
(5) Moving average ® @] * * MOVING AVE. * *
13 No. of movements ? __
Enter the number of —— 15 &) MOVING AVERAGE 643.2
movements (weeks). 14 §
?

(6) Moving average INPUT  NO.7
in the past. ® & * % PAST MOVEMENT * *
Enter the number of 15 No. of movements ?
movements (weeks) ’ P
for which the moving
average isto becal- —> 16 3 @ FROM WHEN? _
culated R

: ) 2 &) Moving Ave. 689
Evzteir the starting Mov?ng Ave. 684.666:---c-crceee
Each moving average 17 Moving Ave. 682
is displayed and then END §
the menu display ———» INPUT NO.? _
appears. —
(7) Graph 18 @O & A graph is displayed.

286



TELEPHONE DIRECTORY

This program permits immediate recall of a desired telephone number by
entering previously stored names. It also permits recalling a phone
number using the initial letter of a name. Names can also be arranged in
alphabetical order.

Explanaion | |

This program can be used to store and recall the phone numbers of your
friends and acquaintances. Up to 180 names can be stored at a time.
Once the names and phone numbers have been stored, it is possible to
recall the desired phone number merely by entering the initial letter or
the first few letters of the name.

When the RAM capacity is expanded to 16KB or more using the RAM
expansion pack(s), up to 255 names can be stored. In this case, it is
necessary to change the program in P1 as follows.

(8KB)
30 IF N=181 THEN 90
40 IF N=1 THEN DIM A$(180), B$(180) * 12

(16KB or more)

30 IF N=256 THEN 90
40 IF N=1 THEN DIM A$(255), B$(255) * 12

First, enter CLEAR &) after inputting all of the programs.

Then, execute the program in PO, and the menu is displayed on the
screen. Enter the appropriate number, 1 to 4. There is no need to press
the @) key. If an OM error (Out of Memory) occurs in line 40 of P1,
erase the other programs or data or expand the RAM capacity using the
RAM expansion pack(s).

(1) INPUT
Stores names and phone numbers. Input data by the following proce-
dure. Data to be input is underlined.
NAME?  CASIO &
TELNO.? 123-4567 &)
Input all names and phone numbers by repeating the above procedure.

When the last name and phone number are entered, enter END &). The
menu is displayed again.

287



CHAPTER S5 PROGRAM LIBRARY

(2) SORTING

Arranges the stored names in alphabetical order. While the names are
being sorted, ‘SORTING ...’ is displayed on the screen. The sort
operation is completed in several seconds to a few minutes depending
on the amount of data stored. The sorted names (and the associated
phone numbers) can be sequentially displayed on the screen by pressing
any key on the keyboard. After all the names and phone numbers
are displayed, the menu is displayed again.

(3) LOOK FOR

Recalls the phone number when a name is entered.
Enter the name as follows:

NAME?  CASIO &)
The name and phone number are displayed as follows:

CASIO
123-4567

Note that only the initial letter or the first few letters of the name may
be entered to recall the phone number. In this case, if there is more
than one name with the same initial letter or first few letters, all of
them are displayed. Note also that if identical names are stored, they
are all displayed. If any name which has not been stored is entered,
‘NO DATA'’ is displayed on the screen. In this case, press any key on the
keyboard to return to the menu.

(4) DELETE

Deletes data which has been stored.
Enter the name to be deleted as follows:

NAME?  ABCDE &
Then, the screen displays:

ABCDE
XXX=XXXX Y/N? (XXX—XXXX: phone number of ABCDE)

If you really wish to delete the name and phone number, press the
key. If not, press the W key. This is to assure you that no data is erro-
neously deleted.

To clear all the data which have been stored or to cancel a DD error,
execute the CLEAR command. Since menu 1 (INPUT) has the function
to add data, it may be combined with menu 4 (DELETE) to add or
delete data freely.

288



TELEPHONE DIRECTORY

Program |

PO
10
20
30
40
50
60
70
80
30

100

P1
10
20
30
40
S0
60
70
80
[7}

100
110
P2

10
20
30
40
S0
60
70
80
30
100

CLs
PRINT "1-INPUT 2-SORTING"
PRINT "3-LOOK FOR"

PRINT "4-DELETE"
K$=INKEY$:IF K$="" THEN 50
IF K$="1" THEN GOTO PROG 1
IF K$="2" THEN GOTO PROG 2
IF K$="3" THEN GOTO PROG 3
IF K$="4" THEN GOTO PROG 4
GOTO 50

CLS
N=N+1
IF N=181 THEN 90
IF N=1 THEN DIM A$(188)>,B%$(188)>%12
INPUT “NAME "3A$CND

IF A$C(ND="END" THEN 100
INPUT "TEL NO.";B$C(ND
GOTO 19

PRINT "FULL":BEEP 1
N=N-1

GOTO PROG @

CLS :PRINT "SORTING..."
FOR I=1 TO N
MM$=A$ (1> : X=1
FOR J=1 TO N
KK$=A%$(I)

GOosSuB 200

NEXT J

A$(X)=A$CID: A$CID=MMN$
MM$=B$ (XD
B$(X>=B4$(I1)>:B$CI>=MM$
NEXT 1

289



CHAPTERS5 PROGRAM LIBRARY

110 GOTO PROG S

200 KU=Q

210 Ku=KU+1

230 O01=LENCMM$):02=LENCKK$)>

240 IF KU>01 THEN RETURN ELSE IF KU>O
2 THEN 300

250 MI$=MID$C(MM$>KU> 1):KI$=MID$ (KK$, KU
51D

260 IF ASC(MI$>=ASCC(KI4$) THEN 210

270 IF ASC(MI$>>ASCC(KI$> THEN X=J:mMM$=
KK$: RETURN

280 RETURN

300 X=J:MM$=KK$:RETURN

P3

18 CLS

20 INPUT "NAME ":mMnM$

30 X=LENCMM$)D

49 1=0

50 I=I+1

60 IF I=N+1 THEN IF F=1 THEN 120 ELSE
130

70 IF MM$=LEFT$C(A$CI>,X> THEN 90

80 GOTO 5@

90 F=1:PRINT A$CI)>

100 PRINT Bs$(CI)D

110 K$=INKEY$:IF Kg$="" THEN 118 ELSE 5
9

120 F=0:G0T0 PROG @

130 PRINT "NO DATA"

140 K$=INKEY$:IF K$="" THEN 140 ELSE 1
20

P4

18 CLS

20 INPUT “NAME “;MM$

30 X=LENCMM$D

40 1=0

50 I=I+1

60 IF I=N+1 THEN 180

290



TELEPHONE DIRECTORY

70
90
100
110
120
130
140
150
160
170
180
PS
10
20
30
40
50
60
70

IF MM$=LEFT$C(A$CID,X> THEN 100
GOTO 50

PRINT A$CID

PRINT B$(I>;" Y/N ";
INPUT K¢

IF K$="Y" THEN 150
GOTO 50

A$CII=A$(ND
B$(I>=B$(N>

N=N-1

GOTO PROG @

FOR I=1 TO N
CLSs
PRINT A$CID
PRINT B$CI>
K$=INKEY$: IF K$="" THEN 50
NEXT 1
GOTO PROG @

Number of bytes used: 1003

291



CHAPTER 5 PROGRAM LIBRARY

(Operation|

Menudisplay —

(1) INPUT
Select menu 1 — —»

Input the first —
person’s name.

Input telephone —
number.

Input the second ——»
person’s name.

Input telephone —
number.

After completing data —»
input, enter END &

and then the menu is
displayed on the screen.

(3) LOOK FOR

Whose telephone num- —
ber do you want to
know?

Only a family name ——
can be entered.

The menu isdiss —
played on the screen.

(2) SORTING
Alphabetical order ———»

After “SORTING..." ——
disappears

The sorted names can——
be sequentially dis-
played.

Step Key operation Display
1—INPUT 2—-SORTING
TS 3-LOOK FOR
4—DELETE

T @ NAME 7_

, | SMITH, NAME ? SMITH, JOHN
JOHN &) | TEL NO. 7_

3 |03-583-4111 ]| NAME 7 _

. | BROWN, NAME ? BROWN, MARY
MARY " ] TEL NO. 7 —
052-264-1453 | NAME 7 _

5 & :

END &) 1—INPUT 2—SORTING

6 3-LOOK FOR

4—DELETE

7 @ NAME ?7_

SMITH, 3 NAME ? SMITH, JOHN

8 JOHN SMITH, JOHN

03-583-4111
&) 1—INPUT 2-SORTING

9 3-LOOK FOR

4—DELETE

0 1@ SORTING...

- &) ALLEN, ROBERT

06-314-2681
=) BROWN, MARY

12

052-264-1453

292




TELEPHONE DIRECTORY

After all the names ——
and phone numbers

are displayed, the

menu is displayed.

(4) DELETE

What namedoyou —
want to delete?

If you really want —

to delete, press (.
If not, press ™ .

The menu is displayed. ———

Confirm that the data
isdeleted using—
menu 3.

""NO DATA" indicates ——
that the name has not
been stored.

Step Key operation Display
= 1—INPUT 2-SORTING
13 3—LOOK FOR
4—DELETE
14 | @ NAME 7 _
SMITH, NAME ? SMITH, JOHN
15 |JOHN &) SMITH, JOHN
03-583-4111 Y/N? _
1—INPUT 2-SORTING
16 3—LOOK FOR
4—DELETE
17 | @) NAME 7 _
1g | SMITH, NAME ? SMITH, JOHN
JOHN [Jé_] NO DATA

Variable contents
N (Number of NAMEs/TEL NOs)—1
X Length of character string to be
looked for
A$(1)
2 Names
A$(180)
B$(1)
14 Telephone numbers
B$(180)
MM$ Character string to be looked for
KK$
KU .
o1 For sorting
02

293




CROSS TOTAL

This program obtains the sums of horizontal (X) and vertical (Y) data,
or sorts the data to determine the percentage of each data element. For
example, item X may be a certain product and item Y may be a certain
month.

Explanation | |

First, execute the program PO, and the following menu is displayed on
the screen:

1 DATA INPUT «<For inputting data

2 TOTAL «<For obtaining horizontal and vertical totals
3 SORT «<For arranging data

4 DATA OUTPUT ¢__ For checking all the data

(1) Data input

When menu 1 (DATA INPUT) is selected, “CLEAR (Y/N)? " is dis-
played. To input data for the first time, press (¥]J. Then, the program
requests you to input the values of X and Y (the value of X is the num-
ber of data elements in horizontal direction, and the value of Y is the
number of data elements in vertical direction).

Input the appropriate values.

After the values of X and Y have been input, X122 3 4o
you are requested to input the data. Input v,

the data according to the element numbers

displayed on the screen:

X=1,Y=1>X=2,Y=1>X=3,Y=1...
X=1,Y¥=2->X=2Y¥=2>X=3,Y=2...

After all data are input, the grand total is

displayed and the menu display appears.

If the data entered contains an error, enter 1 again. When “CLEAR
(Y/N)? ™ is displayed, enter N. Then, the program asks you about the
element number whose associated data is to be corrected. Input the
appropriate element number, and “DATA?” is displayed. Input the
correct data. The correct grand total is displayed and the menu display
appears.

294



CROSS TOTAL

(2) Sum of data in item X or Y

When menu 2 (TOTAL) is selected, “PRINTER ON? (Y/N)” is dis-
played. The subtotals are printed by entering Y. The program asks you
whether you wish to obtain the sum of item X or item Y. Input X or
Y, whichever is appropriate.

When X is input, the program outputs the subtotals of X from 1 to the
preset value, and returns to the menu display after outputting the
grand total. When Y is entered, the program outputs the subtotals of
Y from 1 to the preset value, and returns to the menu display after
outputting the grand total.

(3) Sorting

When menu 3 (SORT) is selected, the program asks you whether the
subtotals of X or Y are to be sorted after displaying “PRINTER ON?
(Y/N)”. When X or Y is input, “SORTING NOW” is displayed and a
sort operation is started. The data sorted in descending order is out-
put, together with the ranking, item name, subtotal and percentage
of each element. Then the menu is displayed. The sort operation requires
some time. For example, it takes approximately one minute and 10
seconds to sort 20 data elements. When the sort operation is completed,
a buzzer sounds and the data output begins. After execution of this
program, the menu display appears again.

Since this program uses many half-precision variables, it can handle a
relatively large volume of data. Note, however, that the maximum
number of digits of input data is five.

To review the result of sorting, press the key and run line 140
of the program P4.

(4) Data output
When menu 4 (DATA OUTPUT) is selected, data such as “X=1
Y=1 DATA=233" is displayed after displaying “PRINTER ON?
(Y/N)”. After all the data are displayed, the menu display appears
again.

295



CHAPTERS5 PROGRAM LIBRARY

Progran |

PO
10

20
30
40
50
60

P1
10
20

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
200

210
220
230

PRINT "1 DATA INPUT";"2 TOTAL","3
SORT"> "4 DATA OUTPUT *;

INPUT R

IF R=1 THEN GOTO PROG 1

INPUT "PRINTER ON7CY/ND',F$

IF R=2 THEN GOTO PROG 2

IF R=3 THEN GOTO PROG 3 ELSE IF R=
4 THEN GOTO PROG 5

INPUT "CLEAR (Y/ND>7",S$

IF S¢="¥" THEN CLEAR :GOTO 308 ELSE
IF S$<>"N" THEN 10 ELSE 110

INPUT "X";X,"Y";Y

DIM D! C(X>¥)> X! (XI5 Y!ICY)

FOR J=1 TO Y:Y!(J>=B:FOR I=1 TO X

PRINT "INPUT DATA X=";T1;" Y=";1,
INPUT D! (I, 1D

YICI)=Y!CIX+D ! (15 1D

NEXT I:NEXT J

GOSUB 2@0:G0TO PROG @

PRINT "CORRECTIONCX,Y>";

INPUT I,1J

INPUT “"DATA";D!(I, J>

FOR J=1 TO Y:Y!(J>=B:FOR I=1 TO X

YICIHH=Y1dI>+D 1 (I, ID

NEXT I:NEXT J

GOSUB 200:G0TO PROG @

S=0:FOR I=1 TO X:X!(I>=B:FOR J=1 T

oy

XICI=XICI>+D ! (I, J)>:S=S+D! (I, J)

NEXT J:NEXT 1

PRINT "GRAND T."3;S:FOR K=0 TO 108:

NEXT K

296



CROSS TOTAL

240 RETURN

P2

10 INPUT "X-SUM OR Y-SUM";P$

20 IF P$="Y" THEN 160 ELSE IF P$="X"
THEN 88 ELSE 10

80 FOR K=1 TO X

90 PRINT "X=";K;" SUM=";X! (K>

95 IF F4="Y" THEN GOSUB 300

97 IF INKEY$="" THEN 397 ELSE 100

180 NEXT K

118 PRINT "GRAND T.=";S

115 IF F$="¥Y" THEN GOSUB 340

120 IF INKEY4$="" THEN 120 ELSE 130

138 GOTO PROG @

168 FOR K=1 TO Y

170 PRINT "y="3;Ks" SUM=";Y! (K>

173 IF INKEY4$="" THEN 173 ELSE 175

175 IF F$="Y" THEN GOSUB 320

180 NEXT K

190 PRINT "GRAND T.="3S

185 IF F$="Y" THEN GOSUB 340

200 IF INKEY$="" THEN 200 ELSE 210

210 GOTO PROG O

300 LPRINT "X=";Ks" SUM=";X!(K):RETURN

320 LPRINT "Y=";K;" SUM=";Y!(K>:RETURN

340 LPRINT "GRAND T.";S
350 GOTO PROG 9
P3

18 INPUT "SORT X OR Y7",P$

20 1F P3$="Y" THEN GOSUB 108 ELSE IF P

$="X" THEN GOSUB 200 ELSE 10

30 GOTO PROG 4
100 ERASE A!
1180 DIM A!CY,>2)

120 FOR J=1 TO Y

297



CHAPTER 5 PROGRAM LIBRARY

130
140
150
200
210
220
230
240

P4

10
20
30
40
5
60
65
70
80
90
35
100
110
120
130
140
150

160
170

180
130
200
210
220
230

ALCT, 10=Y!1CI):A!CT,20=]

NEXT J

N=Y: RETURN

ERASE A!

DIM A!(X,2)

FOR I=1 TO X

AT, 1)=X!ICI>:A (I, 2)=T:NEXT I
N=X:RETURN

CLs
PRINT "SORTING NOW"
REM SORT

FOR K=N-1 TO 1 STEP -1

FOR L=1 TO K

IF A'L,1)>ACL+1,1)> THEN 100

FOR M=1 TO 2

T=A! (LMD

AL, M=A1L+15MD

A CL+1MO=T

NEXT M

NEXT L

NEXT K

REM PRINT

FOR K=1 TO 18:BEEP :NEXT K: CLS
FOR K=1 TO N:GOsSUB 220

PRINT USING"##";K:" ";P$;"=";USING
THEYSA (K 2) 5 USING #HE#H###" A (K
133

PRINT USING"###"; A5 "%"

IF F$="Yy" THEN GOSUB 3080:NEXT K:GO
SUB 328:G0TO PROG ©

FOR L=1 TO 3008:NEXT L:NEXT K
PRINT "GRAND T."3S

FOR K=8 TO 3080:NEXT K

GOTO PROG @

REM RATIO
A=ROUND(A! (K> 1)>,/5,-3)%100

298



CROSS TOTAL

240
300

310
320
330
340
P5

10
20

30
40
50

60
70

8a

RETURN

LPRINT USING"##"3K;" ";P$;"=";USIN
G"##";A! (K> 2 USING" ###tH####":A! (K
2173

LPRINT USING"###";A;5"%":RETURN
PRINT "GRAND T.";S

LPRINT "GRAND T.";S

RETURN

cLS
FOR J=1 TO Y:FOR I=1 TO X
PRINT "X="313" Y=";I:" DATA=";D!(I
> 1)
IF F$="Y" THEN 50

IF INKEY$="" THEN 40 ELSE 60
LPRINT "X=";3;1Is" ="3;71;" DATA=";D!
I, I

NEXT T:NEXT J

IF F$="Y" THEN LPRINT :LPRINT :LPR
INT

GOTO PROG @

Number of bytes used: 1737

299



CHAPTERS5 PROGRAM LIBRARY

Variable contents

Percentage. I,J Array subscripts. S$ Y or N.
A! ()| For storing data K~M | Counters. T Variable for data ex-
during sorting. N Number of data ele- change.
D! ( )| Data array. ments during sorting. [X! ( )| Array for sums of X.
F$ Determines whether P$ XorY. Y!( )| Array for sumsof Y.
the printer is used or R Menu selection.
not. S Grand total.
* |f you wish to handle data more than 5 digits, change variables Al { ), D! ( ), X! ( )and
Y! ( )asfollows: A( ),D( ), X( )and Y( )
Sample Data
X=1 Y= 1 DATA= 321
X= 2 Y= 1 DATA= 369
X= 3 Y= 1 DATA= 357
X=1 Y= 2 DATA= 159
X= 2 Y= 2 DATA= 147
X= 3 Y= 2 DATA= 123
X=1 Y= 3 DATA= 842
X= 2 Y= 3 DATA= 862
= 3 Y= 3 DATA= 579
[Operation
Step Key operation Display
Menu display —— @ i 1 DATA INPUT
2 TOTAL
, ! 3 SORT
(1) Data input 4 DATA OUTPUT ?
Do you want to
clear thestored — Y ?
Clear, 2 @O & CLEAR(Y/N)? _
How many —— X7 __
horizontal items? 3 @]
Howmany —  , 4 3 @ Y?7_
vertical items?
Inputdata — | & 3 & INPUT DATA X=1 Y= 1
(X=1, Y=1). 7_

300




CROSS TOTAL

Inputdata —

(X=2, Y=1).

Grand tota| ———

display

Menu display —M8M8M8

(2) Sum of data in item X
Is the printer used? ——

Enter X & for X
subtotalsand Y &
for Y subtotals.

Output of each sub-————
total (SUM) and
grand total.

Menu display ——

(2) Sum of data in item Y

Is the printer used?————>

Enter Y & for Y
subtotals.

Menu display —MMMM

Step

Key operation

Display

321 &)

Input all the d

INPUT DATA X= 2 Y= 1
7_

ata by repeating above.

GRAND T. 3759

DATA INPUT
TOTAL

SORT

DATA OUTPUT ?7_

BWN =

PRINTER ON? (Y/N)_
X—SUM OR Y—SUM? _

& @

X=1 SUM=1322
X=2 SUM=1378
X=3 SUM= 1059
GRAND T. =3759

@ LELE B

DATA INPUT
TOTAL

SORT

DATA OUTPUT 7 _

H WN =

PRINTER ON? (Y/N)_
X—SUM OR Y—SUM? _

SHeId!

Y=1 SUM=1047
Y=2 SUM=429

Y=3 SUM=2283
GRAND T. =3759

HEEGEIGE

DATA INPUT
TOTAL

SORT

DATA OUTPUT 7 _

HWN -

301




CHAPTERS5 PROGRAM LIBRARY

(3) Sorting

If the printer iscon- ——»
nected, enter Y & .
Arrangement for each ——
subtotal (X or Y)

Sort being
executed.

The data sorted in ——
descending order is

output, together

with ranking, item

name, subtotal and
percentage.

Menu display — 5

If the printer is con-
nected, enter Y &

When sorting data ——
initem Y, enter
Y& .

The data sorted in ——»
descending order
is output.

(4) Data output

If the printer iscon- ——
nected, enter Y &

* The sum of percentages is not always 100% depending on data values.

Step Key operation Display
14 @ & PRINTER ON 7 (Y/N)_
15 ™ &) SORT X OR Y 7 _
16 &) SORTING NOW
1 X=2 1378 37%
5 2 X=1 1322 35%
3 X=3 1059 28%
GRAND T. 3759
1 DATA INPUT
- 2 TOTAL
3 SORT
4 DATA OUTPUT 7 _
19 @ & PRINTER ON ? (Y/N) _
20 ™ &) SORT X OR Y
21 ™ &) SORTING NOW
1 Y=3 2283 61%
22 2 Y=1 1047 28%
3 vY=2 429 1%
GRAND T. 3759
1 DATA INPUT
23 2 TOTAL
3 SORT
4 DATA OUTPUT? _
24 @ &) PRINTER ON ? (Y/N) —
™ &) X=1 Y=1 DATA=321
) X=1 Y=1 DATA=369
25 X=1 Y=1 DATA=357
X=1

Y=2 DATA=159

302




GRAPH MAKING PROGRAM

This program draws various types of graphs with the plotter-printer
(FA-10 or FA-11). Up to 12 data items can be input. The range of data
is as follows.
| Value of data | < 1E90
The program can draw beautiful band, bar, and line graphs, taking
advantage of the 4-color plotter-printer.
* This program is stored on the cassette tape which comes with the
FA-11 optional plotter-printer. It is also stored on the microcassette
tape which comes with the CM-1 optional microcassette tape recorder.

Explanaton | |

When the program is executed, the menu is displayed. First, data must be
entered. This can be done by pressing (1].

The range of data is shown above. Data may be negative numerical data.
Up to 12 data items can be entered. After the 12th data item is entered,
the menu display automatically appears. To terminate the input in the
middle, press the &) key without entering any numerical data.

Menu 2 is used to correct input data. Pressing (2)causes the first input
data to be displayed, and pressing the @) key causes the next data to
appear. Pressing the and @] keys causes the previous data to appear.
Input the correct data when data to be corrected appears.

Menu 3 is the routine to make graphs. Three kinds of graph names are
displayed by pressing (3). Select the type of graph by pressing(d, @, or
(3). (Pressing [%causes return to the menu display.)

Type 1 is a band graph. The entire length of band represents 100%, with
the percentage of each data element represented by the length it oc-
cupies. For easy recognition, the individual data elements are shown in
different colors and stripes. When the band graph is selected, negative
data causes the menu to be displayed.

Type 2 is a bar graph. The scale is automatically set according to the
size of input data. In this graph, positive values are output in green and
negative values are output in red.

Type 3 is a line graph. When (3 is pressed, “Over previous graph?”’ is dis-
played. If a bar graph has been drawn just before, a line graph can be
overwritten on the bar graph by pressing (¥YJ. If no bar graph has been
drawn or a line graph should not be overwritten on a bar graph, press (N,
In this case, the appropriate scale is automatically set and the line
graph is drawn.

Regardless of the type selected, the menu display appears after the
graph is drawn. The menu display also appears when no data is entered.
Note that starting the program again clears the existing data.

Menu 4 terminates program execution.

Menu 5 is provided to output the data to the plotter-printer. It can
also be used to output the total of data.

303



CHAPTER S5 PROGRAM LIBRARY

Print-out Example

50 60 70 80 80 100(%)>

Print Data
D(1)= 1200
D(2>= 4500
D(3>= 8383
D(4>= 9102
D(55= 7701
D(6>= 1532
D(7)= 4562
D(8)= 18020
Total= 55000 15000
10000
5000
Q
Frogram |
PO
10 CLEAR
28 CLS :PRINT " --—- DATA ———— *
30 PRINT TAB(2);"1:Input 2:Correct”sT

40

AB(2Y; "3:Grarh 4:END", TAB(2); "5:Pr
int Data":

K=UALC(INKEY$): IF K<1 THEN 40 ELSE
IF K>5 THEN 40

304



GRAPH MAKING PROGRAM

50 BEEP :GOTO Kx10Q

188 CLS :ERASE D:DIM D(13>:2=1

110 LOCATE 2,3:PRINT "<RETURN> : END";

120 LOCATE 650:PRINT " i

138 LOCATE @,0:PRINT "D(";2Z;")>=";:INPU
T "",AB$

140 IF AB$<>"" THEN D(Z2>=UALC(AB$>:IF Z
<12 THEN Z=Z2+1:G0T0 120 ELSE 20 EL
SE Z2=2-1:G0T0 20

200 IF 2Z2<1 THEN 20

218 CLS :I=1:PRINT TAB(46);":Shift RE
TURN", TABC(6DY; ":RETURN ";

220 LOCATE 4, 2:PRINT CHR$(228)>;CHR$(22
S):LOCATE 4,3:PRINT CHR$(2308);CHR$
(231);

230 DRAWC(32,23)-(47,23)-(47,24>-(32,2
4):L0OCATE B,0:PRINT "DC(";

240 LOCATE 2,0:PRINT I:;">=";DCI);"

":LOCATE 6, 1:PRINT *

250 LOCATE 651:INPUT AB$:K$=INKEY$:IF
AB$<>" " THEN D(I>=UAL (AB$)

260 IF K$=CHR$(24> THEN I=I-1:1IF IK1 T
HEN 20 ELSE 240

270 1F K$=CHR$(13)> THEN I=I+1:IF I>Z T
HEN 20 ELSE 240

280 IF K$=CHR$(23> THEN I=I+1:1IF I>Z2 T
HEN 20 ELSE 240

290 IF K$="" THEN I=I+1:IF I>Z THEN 20

ELSE 240
300 IF 2Z2<1 THEN 28 ELSE CLS

310 PRINT TAB(5Y;"1:Band">»TAB(S5); "2:Ba
r"

305



CHAPTERS5 PROGRAM LIBRARY

320

330

340
400
500

510
520
530

540
550

1000
1010

1020
1830

1040

1050
1060
10670
1080

10390
1100

1110
2000

PRINT TAB(5);"3:Line"s TAB(SY;"4:ME

NU";

K=UALCINKEY$)>: IF K<1 THEN 330 ELSE
IF K>4 THEN 330

BEEP :GOTO Kx1000

LPRINT CHR$(28);CHR$(46>:END

IF 2<1 THEN 20 ELSE GOSUB 6000:LPR

INT "Q1":VU=0

LPRINT "M93,08":;"PPrint Data"

FOR I=1 TO ¢

LPRINT "M";90-4%I;",0";"PD(";MID$(

STR$CID>,2);">=";D(CID

U=U+DC(ID)INEXT 1

LPRINT "M";90-1%4-5;",0","PTotal="
;U GOSUB 6000:GOTO 20

GOSUB 6000:A=0

FOR I=1 TO Z2:1IF D(I><@ THEN ERASE
1:G0TO 20 ELSE A=A+DC(IJ:NEXT I

IF A<=0 THEN 24

LPRINT "05:08","X1,8,10","M85,1","P
(";CHR$(37);")H>"

FOR I=18080 TO @ STEP -18:LPRINT "M"
1-4+8%I1/108: "> 1"y "P"s T:NEXT 1

B=0:C=0

FOR I=1 TO ¢

C=ROUND(D(CI>/AX80B+C;-2>

LPRINT "J";1 MOD 45"A";B3;"»-35";C;
"9-23"

LPRINT “G";I MOD 2+1;",":C-B;"»-20
93 (I MOD 3>/4+.5
B=C:NEXT 1

LPRINT "H30":GOTO 20
GOSUB 6000: GOSUB 70800: GOSUB 80001

306



GRAPH MAKING PROGRAM

2010
2020
2030
2040

2050

2060
2070
3000

3010

3020
3030
3040
3050
3060

3070
3080
303909
3100

3110
3120
3130
3140
3150
3160
3170

FOR I=1 TO ¢

IF DCI>>=8 THEN J=2 ELSE J=3
LPRINT "J"37J

LPRINT "A";0:5"s";;6-8%I:"";ROUNDCD
(I>/A%90B/N+05-23;:"s "3 -8%I

LPRINT "M"30:",":6-8%1s"G1l,"3sROUND
(DCI>/A%X90B/N,-2>; " -6"

NEXT 1

LPRINT "M@s";-8%(Z2+1)>:G0T0 20

IF 2<{2 THEN 28 ELSE CLS :PRINT "Ou
er Previous grarh?",TAB(8); "Y/N"
K$=INKEY$:IF K¢$="¥" THEN BEEP :GOT
0 3080 ELSE IF K$<>"N" THEN 3010 E
LSE BEEP

GOsSUB 6000

GOSUB 7000:G0OSUB 8003

LPRINT “"L1","J@"

FOR I=1 TO 2

F=3-8%I:IF I MOD 2=1 THEN LPRINT *“
D@, "3F3"»,90,";F ELSE LPRINT "DS@,"
sF:"s0s "5 F

NEXT I:LPRINT "LO">"M@,0"

S=S+1:1IF S>3 THEN S=0

T=T+.25:1IF T>3.9 THEN T=0

IF T<2 THEN LPRINT "B1l.6" ELSE LPR
INT "B6.4"

LPRINT "J";S,"L";T
G=ROUNDC(D(1>,A%S8/N+0, -2>:H=-5

FOR I=2 T0 2
U=ROUNDC(D(I>/A%98/N+0s-2):U=3-8%1
LPRINT "D";3G:"s"sH;"s"3U3"»"3U
G=U:H=U

NEXT 1

307



CHAPTER5 PROGRAM LIBRARY

3180

4000
6000

6010
7000
7010
7020
7030
7040
7050
7060
7070
8000

8010

8020
8030
8040

8050
8060

8070
8080
80390
8100
8110

LPRINT "B3.2"5"M@s";-8%(Z+1>:G0TO
20

GOTO 209

LPRINT CHR$(28);CHR$(37>,"008,0">"J
8" "LB"5"S1"5"@B","YQ", "B3.2","H20
S=0:T=0:RETURN

Y=—-9ES39:B=39ESS

FOR I=1 TO Z

IF DCID>Y THEN Y=DC(I)>

IF DCI><B THEN B=D(I>

NEXT 1

IF ¥Y>=8 THEN D(@)>=Y ELSE D(B>=0

IF B>3 THEN D(Z+1)>=0 ELSE D(Z+1>=B
RETURN

IF SGND(@>%SGND(Z+1)><=8 THEN M=ABS
(D(@>-D(Z+1>> ELSE M=DC(B>:IF MKB T
HEN M=ABSD(Z+1)

IF M=<@ THEN 20 ELSE R=INTLGTM:A=1
0°R

IF AXINT(MsADX.75<M THEN A=AX%.5
D=LENC(STR$C(A>>%2. 4+5

IF SGND(@>*SGND(Z+15><@ THEN N=INT(
M/7AY+2 ELSE N=INT(M/A>+1
C=ABSINT(D(B>,A>+SGND(3)>

FOR I=N TO @ STEP —-1:IF C=8 THEN O
=1%S0/N

C=C-1:NEXT I

LPRINT "D@,0,390,08"s "Q1":WU=18,N:U=0
U=U+5:1F UxXW<K18 THEN 8030

IF D(B><=8 THEN 81508 ELSE X=0
K=ROUND(X»=2>:LPRINT "D"3K:"»25";K

3 n’_2u

308



GRAPH MAKING PROGRAM

8120 LPRINT "M"3K;"»";Ds"P"3;ROUNDCC(X-0)
XAXN/98,R-2>

8130 LPRINT "L1","D":K;"38,":Ks"»"3;-2%8
=2, "LB" s X=X+UXU

8140 IF X<(90 THEN 8110

8150 LPRINT "DS@,2,98,-2"5"M3S35 ";D>"P";
ROUND ( (39-0) *¥AXN,3985R-2)

8160 IF D(Z+1>>=@ THEN 8220 ELSE X=0-WxX
v

8170 K=ROUND (X5 —-2):LPRINT "D"3K; "»2,";K
3V —2"

8180 LPRINT "M"3Ks:"3;"3Ds"P"; ROUNDC(X-0)
XAXN/90,R-2)

8190 LPRINT "L1","D";K;"s8s"3Ks"»";-2%8
=25 "LO" 1 X=X-UxU

82008 IF X>0 THEN 8170

8210 LPRINT "DB@5250>-2","M35"3Ds "P"3ROU
ND (—0X%A%XN,908>R-2)

8220 LPRINT "DGBsB,0,";-8%Z2-2;"530,";-8%
2-2:"+90,0","M3,0Q"

8238 RETURN

Number of bytes used:2712

If one-key commands are used for the input of lines 30, 140, 240, 3010,
3060 and 8000, spaces are automatically entered after the commands
and a whole line cannot be input because the input range of 79 characters
is exceeded. Therefore, input each line after deleting extra spaces using
the (&) key.

Example: 30_ PRINT__TAB(2);....

30 PRINTTAB(2);....

309



CHAPTER S5 PROGRAM LIBRARY

(Operation|

Step Key operation Display

Menu display — > DATA

1 Input 2 : Correct

3 :Graph 4 :END

5 : Print Data
(1) Data input €3] D( 1)=

L CRETURN> : END

After the 12th data , |2 12& D( 2)=
item is entered, the
menu display automati-
cally appears. — > @ D( 1) =1200
(2) Data correction 1200 & ?
After the correction is— | 3 Shift RETURN (Previous data)
made to the last, the RETURN (Next data)
menu is displayed.
(3) Graph making ) 1 Band

2. Bar

4 3 : Line

4 : MENU

Band graph is
inted t. —4— .

printed ou ) (After the graph is output,
Bar graph is the menu is displayed.)
printed out. > @ (After the graph is output,
Determine whether the menu is displayed.)
a line graph is over 5 o . h?
writtenonthebar___ B ver previous graph
graph or not. Y/N
Linegraphis or (N (After the graph is output,
printed out. the menu is displayed.)
(5) Data output.
Data are printed out ———| . | (5] (After the data are output,

the menu is displayed.)
(4) Execution 7 @

termination.

310




\CHAPTER 6

REFERENCE
MATERIAL




6-1 PB-770 COMMAND TABLE

6-1-1 Operational Symbols
[1] Arithmetic operators

Name General format | PB-770 format Meaning Priority
Power x¥ XAY Raise X to power Y. 1
Multiplication Xxy X*xY Multiply X by Y. 2
Division x+y X/Y Divide X by Y. 2
Remainder x+y=z2 X MOD Y 5ﬁ?§§3%‘§dvér'ye3, 3
Addition x+y X+Y Add Y to X. 4
Subtraction xX—=y X-Y Subtract Y from X. 4
Assignment xX=y+5 X=Y+5 Assign Y +5 to X. 5

[2] Relational operators (conditional expressions)

General format PB-770 format Meaning
xX=y X=Y Xisequal to Y.
X%y X<>Y, X><Y Xisnotequal to Y.
x<y X<y X is smaller than Y.
x>y X>Y X is greater than Y,
X<y X<=Y, X=<Y X is smaller than or equal to Y.
X ;y X>=Y, X=>Y X is greater than or equal to Y.

® The relational operators are valid only in |F statements.
® A comparison can be made between numerical constants, numerical variables, and
numerical expressions, and between character constants and character variables.

Character expression operators

+ eeee Two or more character strings can be concatenated by a + (plus sign).

6-1-2 Special Character

General format PB-770 format Meaning

xx 107 XEY Exponent entry (Multiply number X by
Y power of 10.)

e |f the absolute value of the operation result is equal to or greater than 10'® or smaller than 107
(0.001), it is automatically indicated by exponential notation.

312



6-1 PB-770 COMMAND TABLE

6-1-3 Built-in Functions

Name General format| PB-770 format Meaning / Remarks Page
Trigonometric sinx SIN X Gives the sine of X. 214
cosx COS X Gives the cosine of X. 217
tanx TAN X Gives the tangent of X. 218
Inverse . sin!x ASN X Gives the arcsine of X.
trigonometric cos'x ACS X Gives the arccosine of X. 219
tan"'x ATN X Gives the arctangent of X.
Hyperbolic sinh x HYPSINX Gives sinh X.
cosh x HYPCOS X Gives cosh X. 221
tanh x HYPTAN X Gives tanh X.
Inverse sinh™!x HYPASN X Gives sinh™! x.
hyperbolic cosh™'x HYPACS X Gives cosh™ x. 221
tanh™ x HYPATN X Gives tanh ! x.
Logarithmic log x LGT X log,e X (common logarithm) 223
Inx LOG X loge X (natural logarithm)
Exponential ex EXP X X power of natural |ogarithm 226
base (€)
Power x7Y X~Y Y power of X, 26
Square root VX SQR X Gives the square root. 222
Absolute 1X1| ABS X Gives the absolute value of X.
value 228
Integer INT X When X>0, the fraction portion
of X is discarded.
When X<0, the fraction portion
of | X|is rounded up, a —(minus| 230
sign) is prefixed to | X|.
INT1.2->1
INT —1.2—> -2
Fraction FRAC X Eliminates the integer portion to
obtain only the fraction portion. 232
Circular m Pl Gives an approximate ratio of
constant the circumference of a circle to
its diameter in 11 digits: 238
3.1415926536.
Random RND Generates a 10-digit pseudo 239
number random number (@ < RND < 1).

313




CHAPTER 6 REFERENCE MATERIAL

character
string.

Name General format| PB-770 format Meaning/remarks Page
Sign SGN X Checks the sign of an argument:
X<0- -1
X=0-> 0 234
X>0- 1
Rounding ROUND (X, Y) Rounds off the value of X
at 10Y positions. 236
Degree, Sexagesimal DEG (d[,m[,s]])| Gives the decimal
minute, —decimal (d, m, s: numeri- | equivalent of a 241
second cal expressions) | hexadecimal value.
Memory PEEK X Gives the contents of address X
contents 242
reading
6-1-4 Character Functions
Use Function Example Meaning Page
Gives character | Asc PRINT ASC Displays the character code of
character of a (“E") character E. 243
string.
Gives one CHR $ PRINT CHR $ Displays character (E) equivalent to
character de- (69) character code 69.
signated by 245
character code.
Converts VAL A = VAL (X$) Converts a character string of nu-
numeral in merals stored in character variable
a character X$ to a numerical value.
string to 247
numerical
value.
Converts nu- STR $ C$=STR $(X) | Converts a numerical value stored
merical value in numerical variable X to a charac-
to character ter string. 250
string.
Fetches speci- LEFT $ C$=LEFTS$ Fetches the three characters on
fied number (X$, 3) the left of character string stored
of characters in X$ and assigns them to C$.
from left of 252

314




6-1 PB-770 COMMAND TABLE

Use Function Example Meaning Page
Fetches speci- | RIGHT $ C$=RIGHT $ | Fetches the three characters on
fied number (X$, 3) the right of character string
of characters stored in X$ and assigns them to
from right of Cc$. 253
character
string.
Fetches speci- MID $ C$=MID $ Fetches the five characters starting
iﬁ:r:;’;'s’es';;:_ (X$,3,5) | from the third character of character 254
ing from the spe- string stored in X$ and assigns them
cified position. to C$.
Counts the LEN A = LEN (X$) Assigns the number of characters in
number of character string stored in X$ to A.
characters in 256
a character -
string.
Inputs one INKEY $ A$=INKEY $ | When INKEYS$ is executed, if one
character key on the keyboard is pressed, it is
from the assigned to A$. Only one character 257
keyboard. can be assigned to A$.
Converts a DMS$ C$=DMS$(X) Converts the numerical value assign-
decimal value ed to X to a character string that 259
to sexagesimal. represents the sexagesimal value

of X.
Converts a HEX$ C$=HEX$(X) Converts the numerical value assign-
decimal value ed to X to a character string that 260
to hexadecimal. represents the hexadecimal value
of X.
6-1-5 Display Functions

Use Function Example Meaning Page
Checks POINT POINT (10, 20) | Checks whether the dot represented
whether a by coordinates (10, 20) is on
dot on the (displays 1) or off (displays @) 266
screen is on
or off.
Moves cursor TAB PRINT TAB(10)| Tabs cursor to position 1@ on the
by specified screen,
number of 261
positions,
Specifies USING PRINT USING | Displays a numerical value stored in
output “HHERHBH A numerical variable A according to 263
format. format " ###.##"'

315




CHAPTER 6 REFERENCE MATERIAL

6-1-6 Statistical Functions

Function |General format Meaning Page
CNT n Number of statistical data processed. 270
SUMX zx Sum of X data.

SUMY zy Sum of Y data.

SUMX2 zx? Sum of squares of X data. 27
SUMY2 zy? Sum of squares of Y data.

SUMXY zxy Sum of products of X data and Y data.

MEANX x Mean of X data. 272
MEANY y Mean of Y data.

SDX X0On-1 Sample standard deviation of X data.

SDY YOon-1 Sample standard deviation of Y data. 273
SDXN X0, Population standard deviation of X data.

SDYN Yon Population standard deviation of Y data.

LRA a Linear regression constant term. 274
LRB b Linear regression coefficient.

COR r Correlation coefficient. 270
EOX % Estimated value of X for Y.

EOY » Estimated value of Y for X. 274

316



6-1 PB-770 COMMAND TABLE

6-1-7 Manual Commands

Use Command Example Meaning Page
Automatically| AUTO AUTO Line numbers starting with line 10
generates and incremented by 10.
line numbers. AUTO 100 Line numbers starting with line 100 130

and incremented by 10.
AUTO 50, 20 Line numbers starting with line 50
and incremented by 20,
Resumes CONT CONT Resumes the execution of a program
program that has been stopped by a STOP 131
execution. statement or by the key.
Deletes DELETE DELETE 50 Deletes line 50.
program. -
DELETE 30— Deletes from line 30 to the end.
DELETE —100 | Deletes up to line 100 from 132
the beginning.
DELETE Deletes from line 150 to line 200.
150 — 200
Modifies EDIT EDIT Displays the first line and specifies
program. the EDIT mode. 134
EDIT 30 Displays line 30 and specifies the
EDIT mode.
Displays LIST LIST Displays the program in the pre-
program list. sently specified program area.
LIST 50 Displays line 50.
LIST 30— Displays from line 30 to the end.
LIST — 50 Displays up to line 50. 137
LIST 30 — 50 Displays from line 30 to line 50.
Displays all programs in the entire
LIST ALL program area.
LIST V Displays registered variable names.

317




CHAPTER 6 REFERENCE MATERIAL

Use Command Example Meaning Page
Prints LLIST LLIST Prints the program in the presently
program list. specified program area.

LLIST 50 Prints line 50.

LLIST 30 — Prints from line 30 to the end.

LLIST —50 Prints from the beginning to 137
line 50.

LLIST 30 —50 | Prints from line 30 to line 50.

LLIST ALL Prints all programs in all program
areas.

LLISTV Prints registered variable names.

Reads LOAD LOAD Reads a program in internal code
program from format to the presently specified
cassette tape. program area.

LOAD ALL Reads all programs in internal code
format to the all program areas.

LOAD, A Reads a program in ASCI| code
format to the presently specified
program area.

LOAD, M Links the program in the presently
specified program area with the
program read in ASCII code format.

LOAD, D, Reads internal code format data 139

4096 from memory address 4096(10).

LOAD ““ABC* Perform functions similar to the
above respectively in regard to

kg:sﬁéf‘L programs with file names,

LOAD

“TEST"”, A

LOAD

“TEST"”,M

LOAD

PB", D, 4096

Erases NEW NEW Erases a program in the presently
program. specified program area. 143
NEW ALL Clears the entire RAM area.

318




6-1 PB-770 COMMAND TABLE

Use Command Example Meaning Page
Protects PASS PASS “"KEY" Sets a password named “KEY."”
program. 144
Specifies a PROG PROG 2 Specifies the program area 2.
program area. 146
Starts RUN RUN Starts the execution of a program
program from the beginning of the presently
execution. specified program area. 147
RUN 100 Starts the execution of a program
from line 100.
Stores pro- SAVE SAVE Stores the program in the presently
grams to a specified program area on a cassette
cassette tape. tape in the internal code format.
SAVE ALL Stores all programs in all program
areas on a cassette tape in the
internal code format.
SAVE, A Stores the program in the presently
specified program area on a cassette
tape in the ASCII code format.
SAVE, D, Stores internal code format data on
3000, 3999 a cassette tape from address 3000 148
(10) to 3999(10).
* (10) indicates decimal values
as opposed to hexadecimal values.
SAVE "“ABC” Pgrform functio?s similar 'Ejo the
above respectively in regard to
SAVE ALL e
“CASIO" programs with file names.
SAVE
“TEST”,A
SAVE "PB”, D,
3000, 3999
Displ YSTE Displays program area status,
st;st'::::\:; SYSTEM SYSTEM ANGLE setting, memory capacity,
remaining number of bytes, and 151
program areas. data area starting address.
Checks VERIFY VERIFY Performs a parity check of the pro-
programs gram file which appears first.
ts:ta':;:(t’t:rtla‘:)e VERIFY Performs a parity check of the pro- 153
° “ABC" gram with a specified file name.

319




CHAPTER 6 REFERENCE MATERIAL

6-1-8 Program Commands

(1,0)-(5,10)

nates (1,0) to (5, 10).

Use Command Example Meaning Page
Specifies ANGLE ANGLE 0 Specifies degrees.
angle unit. ANGLE 1 Specifies radians. 154
ANGLE 2 Specifies grads.
Generates BEEP BEEP Same as BEEP 0.
buzzer sound. BEEP 0 Generates a low pitched beep. 155
BEEP 1 Generates a high pitched beep.
Reads and CHAIN CHAIN Loads and executes the PF B that
executes first appears.
program 156
° CHAIN ”XY2" | Loads and executes the program
with a specified file name.
Clears all CLEAR CLEAR Clears all variables.
;:::gli:ss.the CLEAR Clears all variables and sets up a data ]
starting add- 4000 area from address 4000(10). 58
ress of the
data area.
Clears display | CLS CLS Clears the entire screen and moves 161
screen. the cursor to the home position.
Stores data. DATA DATA1,2,3 Stores data to be referenced by the 205
READ statement.
Declares DIM DIM A (3) Declares a one-dimensional single-
array. precision numerical array.
DIMB (2, 3) Declares a two-dimensional single-
precision numerical array.
DIM C! (4) Declares a one-dimensional half-
precision numerical array.
DIM D! (3,4) Declares a two-dimensional half-
precision numerical array.
DIM ES$ (5) Declares a one-dimensional fixed- 162
length character array.
DIMF$ (4,5) Declares a two-dimensional fixed-
length character array.
DIM G$ (2)*%3 Declares a one-dimensional defined-
length character array and specifies
3 as the character length.
DIM Declares a two-dimensional defined-
H$ (4, 5)%6 length character array and specifies
6 as the character length.
Draws point DRAW DRAW (0, 0) Draws a point at coordinates (0, 0).
and straight DRAW Draws a straight line from coordi- 167

320




6-1 PB-770 COMMAND TABLE

Use Command Example Meaning Page
Erases point DRAWC DRAWC (0,0) Erases the point at coordinates
and straight (0,0).
fine. DRAWC Erases the straight line between 167
(1,0)—(5,10) | coordinates (1, @) and (5, 10).
Terminates END END Terminates the execution of a
program program. 170
execution.
Releases ERASE ERASE A Releases the definition of registered
array name. variable A or array variable A. 17
Loop FOR FOR I=5 Repeatedly performs the processing
(repeat). TO TO 20 between FOR and NEXT while in-
STEP STEP 0.5 crementing the value of variable | 172
14 14 by 0.5 from 5 to 20.
NEXT NEXT |
Reads GET GET A Reads the variable data that first
variable data appears. 177
:::: cassette GET Reads the variable data having a file
) “MAX"” B name "MAX."”
Jumps to GOSuUB GOSuUB 100 Jumps to the subroutine in line 100.
subroutine. -
GOSsuB Jumps to the subroutine in program 180
PROG 3 area 3.
End of RETURN RETURN Returns to the command following 180
subroutine. the GOSUB statement.
Unconditional| GOTO GOTO 500 Jumps to line 500.
jump. GOTO Jumps to program area 5. 184
PROG 5
Conditional IF ~ IF1>9 Jumps to line 50 if | is greater than
jump. THEN ~ THEN 50 9; otherwise, jumps to line 80. 186
ELSE ~ ELSE 80
Data input INPUT INPUT S Displays a ?, then waits for data to
from be entered in S.
keyboard. INPUT Displays NAME, then waits for data
“NAME”, T$ to be entered in T$. 189
INPUT Displays NAME ?, then waits for
“NAME”; U$ | data to be entered in US$.
Assigns data LET LET A=B Assigns B to A. 195
to variable.
Specifies LOCATE LOCATE 2,3 Specifies coordinates (2, 3) as the
cursor cursor position. 196
position.

321




CHAPTER 6 REFERENCE MATERIAL

Use Command Example Meaning Page
Writes data POKE POKE Writes the value 10(10) to address
O romamory 3500, 10 3500(10). 197
Displays PRINT PRINTC,D Displays the values of C and D on
data. separate lines.
PRINT C;D Displays the values of C and D 198
on the same line.
PRINT $AB$ Displays the pattern defined by
ABS$.
Prints data. LPRINT LPRINTC,D Prints the values of C and D
on separate lines. 198
LPRINTC; D Prints the values of C and D
on the same line.
Stores PUT PUT A Stores data of variable A on cassette
variable data tape.
on cassette PUT Stores data of variable A with file 203
tape. “DATA” A name on cassette tape.
Reads stored READ READ X Reads data stored in variable X by
data. DATA statement. 205
Remark REM REM *** Provides a comment in a program. 209
Specifies RESTORE | RESTORE Reads from the first DATA state-
sequence of ment when executing READ
execution statement. 205
::azﬁ\:ﬁts. RESTORE 100 | Reads from the DATA statement on
line 100 when executing READ
statement.
Inputs statisti- | STAT STAT 1, 2;2 Inputs values of x data, y data and
cal data. frequency. 268
Clears the STAT STAT CLEAR Sets contents of CNT, SUMX,
statistical CLEAR SUMY, SUMX2, SUMY2 and 269
registers. SUMXY to @.
Displays the STAT STAT LIST Displays contents of CNT, SUMX,
statistical LIST ‘'SUMY, SUMX2, SUMY2 and 269
register SUMXY.
contents.
P.rir_lts the sta- | STAT STAT LLIST Outputs contents of CNT, SUMX,
tistical register [ | | |ST SUMY, SUMX2, SUMY2 and 269
contents SUMXY to printer.
Halts program | STOP STOP Suspends the execution of a
execution. program. 210
Traces TRON TRON Specifies the trace mode and traces
program the status of program execution. 212
execution.
Relgases TROFF TROFF Releases trace mode.
tracing of 212
program
execution.

322




6-2 ERROR MESSAGE TABLE

Message

Meaning

Countermeasure

BS error
(Bad Subscript)

® Subscript of an array variable is a
negative value or the value exceeds
255,

Example) DIM A (256)

® Specified numerical value is outside
the argument range.
Example) The POINT function has
the following argument.ranges:
0XXX159and XY =31
But the specified numerical value
is outside this range.

® Change the value of subscript
to a value within the specified
range. When the subscript is a
variable, check the assigned
value.

® Re-specify the subscript within
the specified argument range.

BV error
(Buffer oVerflow)

® An overflow of the input or output
buffer.

® Each operation or program
statement cannot exceed 79
characters in length.

DA error
(DAta error)

o A READ statement or GET state-
ment was executed even though
there is no data to read.

® Check the relation between the
READ and DATA statements.
Ensure that there is data for
each READ.

DD error ® Arrays having the same array name ® Check the variable on the line
(Duplicate and a different subscript were in which an error has occurred.
Definition) doubly defined. Also check for subscripts having
Example) The following array the same array name, Change
variable declarations by a DIM either of the array names and
statement cause a DD error. .... reorganize the program.
DIM AP ), A(2I. 3) e Input CLEAR or ERASE before
B:m 2$((11))2$(é :33)) the DIM statement or execute it
DIM AS$(1 );"20' . manually to clear the array.
A$(2, 3)%20
DIM A$(1)*20,
A$(2, 3)%20
FC error ® An attempt was made to execute any | @ Remove the incorrect com-

(illegal Function
Call)

of the following manual commands
in a program:
CONT, PASS, RUN, EDIT,
DELETE

® An attempt was made to execute any
of the following program commands
manually:
END, LET, REM, STOP, LOCATE,
DRAW, DRAWC, GOTO, GOSUB,
RETURN, INPUT, DATA, READ,
RESTORE, FOR~NEXT,
IF~THEN~ELSE~

® A CONT command was used when
program execution could not be
resumed.

mand from the program.

® Execute the command with a
line number attached.

® Press the key. Then either
re-execute the program from
the beginning or, if the stopped
line is known, re-execute the
program from the line next to
the stopped line by “RUN line
number”’,

323




CHAPTER 6 REFERENCE MATERIAL

Message Meaning Countermeasure
FO error ® FOR statement without corre- ® Check the nesting structure.
(NEXT without sponding NEXT statement.
FOr)
GS error ® RETURN statement without corre- | ® Check the nesting structure in
(RETURN sponding GOSUB statement. the GOSUB statement, and

without GoSub)

clearly distinguish between the
main routine and the sub-
routine.

MA error
(MAthematical
error)

® An arithmetic operation involving
numerical values or numerical func-
tions is uncertain or impossible,
Example) Division by 0.

©® Check the numerical expression
on the line in which an error
has occurred. Also check the
value of the any variables.

NO error ® The number of nesting levels ex- ® Check the nesting structure and
(Nesting ceeded the specified limit. reduce the nesting level within
Overflow) Example) GOSUB~RETURN the allowable range.
Max. 12 levels
FOR~NEXT
Max. 6 levels
NR error ® |/O device is not correctly con- ® Check that the relevant device
(device Not nected. is properly connected and
Ready) Example) No magnetic tape switched on.
recorder is connected.
OM error ® RAM capacity is insufficient. ® Delete unnecessary programs.

(Out of Memory)

o |nsufficient number of bytes
required for variable or PRINT
(LPRINT) in the work area.
Example) 5 bytes remains.

Q$=""12345"
PRINT “12345""

® Bad specified address location
by the CLEAR statement.

Decrease the size of the data area
using the CLEAR command.

Expand memory capacity using
RAM expansion pack (s).

Confirm the number of remain-
ing bytes using the SYSTEM
command.

® Use a higher address in the
CLEAR command and
decrease the size of the
data area.

OV error
(OVerflow error)

® The result of an operation or the
numerical value entered exceeds
10180

® Check the numerical expression
in the line in which error
occurred.
Insert a PRINT statement in
the program to check the value
of the variable.

324




6-2 ERROR MESSAGE TABLE

Message

Meaning

Countermeasure

PR error
(PRotected error)

® An attempt was made to execute
any of the following commands
which cannot be used with a pro-
gram having a password:
DELETE, LIST, LLIST, NEW,
EDIT
® An attempt was made to add a new
line to, or delete a line from, a pro-
gram having a password.
o A different password was entered.
® An attempt was made to load a pro-

gram whose password is different
from the PB-770 password.

® Re-enter the password, release
the locked condition, and
execute the program.

® |nput the correct password.

® Release the PB-770 password
before loading. In this case,
the newly loaded password be-
comes the PB-770 password.

RW error
(Read Write error)

® Parity error during execution of a
LOAD or VERIFY command.
® Printer function is not activated.

® Store the program again
using the SAVE command.
® Activate the printer function.

SN error
(SyNtax error)

® Command format error.

® The line number has a fraction.

® An array having three or more di-
mensions was declared.

® Use the EDIT command to call
the line where the error has
occurred and correct the line.

e Correct the line number.

® The number of dimensions
must not exceed 2,

SO error
(Stack Over error)

® Numerical value stack exceeds
8 levels.
® Operator stack exceeds 20 levels.

® Character stack exceeds 10 levels.

® Simplify or divide the numeri-
cal expression so that the stack
level can fall within the speci-
fied range.

® Simplify or divide the charac-
ter expression so that the stack
level can fall within the speci-
fied range.

ST error
(STring error)

® An attempt was made to assign a
character string whose length ex-
ceeds the allowable character vari-
able length.

The allowable character variable
length is as follows:
— Fixed character variable
Max. 7 characters
— Registered character variable
Max. 16 characters
— Fixed-length character array
variable Max. 16 characters
— Defined-length character array
variable Max. 79 characters

® Change the variable to another
variable that can contain more
characters.
Decrease the number of charac-
ters of the character string to be|
assigned to the variable.
Be careful when concatenating
character strings.

325




CHAPTER 6 REFERENCE MATERIAL

Message

Meaning

Countermeasure

TM error
(Type
Missmatch)

and right sides are of different
variable types.

® The argument types do not match
during an assignment.

® In an assignment statement, the left

® Both the left and right sides of
an assignment statement must
be either numerical variables or
character variables.

® Assign a numerical value to a
numerical variable, and a char-
acter string to a character
variable.

UL error
(Undefined Line
number)

® The specified line number does not
exist in an IF~THEN, GOTO or
GOSUB statement.

® No program exists in the program

statement.

area specified by a GOTO or GOSUB

® Create a line number to which
a jump is to be made or change
the specified line number to
which a jump is to be made.

® Create a program area to which
a jump is to be made, or change
the location to which a jump is
to be made.

UV error
(Undefined
Variable)

® Undefined variable used.

® Array variable used without
declaring it using DIM statement.

® Subscript of an array variable
exceeds the range specified by
DIM.

® Check the initial value of
variable.

o Declare the array by the DIM
statement at the beginning of
the program.

® Change the size of the subscript
within the specified range.

VA error
(VAriable error)

® An attempt was made to register
more than 40 variables.

e Up to 40 registered and array
variables can be used. Check
the variable names by LISTV,
and delete unnecessary variable
names by CLEAR or ERASE.

326



6-3 CHARACTER CODE TABLE

1 91 PV e | e [ L

[SPACE] ISPACE]

=
W
!

A

|
R

[161

.
4
a=

z
B m

z
4

J
N

I
d

i
N

!
s

L]
!

EREsEEER
EREcEEER
ERRcEEe
EREEEE

wWg | [BEL]

=
z
E]
=
=

]

E
.

}E
i,
E|

I
:

R
o

&
L
z
i

-
g

-

P‘C!...-

J

|

=)
[=}
o

o

.
i |

25
T
=

]
5

222 254

x
T
=

INULL]

ik ) W 7 B U

INULL]

255

-
;I
ool 22
=
n

Jl

|

[ 63] 223]

327



SPECIFICATIONS

= Type
PB-770

® Fundamental calculation functions
Negative numbers, exponentials, parenthetical addition/subtraction/multiplication/
division (with priority sequence judgement function — true algebraic logic), MOD .

® Commands
AUTO, CONT, DELETE, EDIT, LIST, LLIST, LOAD, NEW, NEW ALL, PASS,
PROG, RUN, SAVE, SYSTEM, VERIFY, ANGLE, BEEP, CHAIN, CLEAR, CLS,
DIM, DRAW, DRAWC, END, ERASE, FOR-TO-STEP, NEXT, GET, GOSUB,
RETURN, GOTO, IF-THEN-ELSE, INPUT, LET, LOCATE, POKE, PRINT,
LPRINT, PUT, READ, DATA, RESTORE, REM, STOP, TRON, TROFF,
Statistical commands — STAT, STAT CLEAR, STAT LIST, STAT LLIST.

® Functions
SIN, COS, TAN, ASN, ACS, ATN, HYPSIN, HYPCOS, HYPTAN, HYPASN,
HYPACS, HYPATN, SQR, LOG, LGT, EXP, ABS, INT, FRAC, SGN, ROUND, PI,
RND, DEG, PEEK, ASC, CHR$, VAL, STR$, LEFT$, RIGHT$, MID$, LEN,
INKEY$, DMS$, HEX$, TAB, USING, POINT, &H.
Statistical functions — CNT, COR, SUMX, SUMY, SUMX2, SUMY2, SUMXY,
MEANX, MEANY, SDX, SDY, SDXN, SDYN, EOX,
EOY, LRA, LRB.

@ Calculation range
+1 x 107%° ~ £9.999999999 x 10%°
(Internal calculation uses 12-digit mantissa.)

=Program language
BASIC

mMemory capacity for programs
RAM: Standard 8K bytes, expandable up to 32K bytes.
(Including 1321 bytes in system area.)
ROM: Approx. 32K bytes.

®Number of program areas
Maximum 10 (P® — P9)

mNumber of stacks

Subroutine 12 levels
FOR-NEXT loop 6 levels
Numerical values 8 levels
Operators 20 levels

328



SPECIFICATIONS

=Display system
Liquid crystal display (20 digits x 4 lines)

mDisplay elements
32 x 160 dots (20 x 4 characters)

mDijsplay contents
10-digit mantissa + 2-digit exponent

mMain component
LSl

mPower consumption
0.1W

=Power source
Main: 4 AA size batteries.
Sub (for RAM backup): 1 lithium battery (CR1220).
= Battery life
Main: Approximately 100 hours on type SUM-3 (continuous operation).
Sub: (see page 15)

= Auto power off
Power is automatically turned off approximately 6 minutes after last operation.

# Ambient temperature range
0°C to 40°C (32°F to 104°F)

mDimensions
23mmH x 200mmW x 88mmD (73"H x 7 78"W x 314"D)
= Weight

315 g (11.1 oz) including batteries.

329



INDEX

A

ABS 228
Absolute value 228
ACS 219
&H 275
ANGLE 154, 214
Array variable 67
ASC 243
ASCII code 243
ASN 219
Assignment 37
ATN 219
AUTO 130
Auto power off 16
B

Backup battery 15
Base of a natural logarithm 223
BASIC 34
BEEP 155
Built-in functions 313
C

Calculation precision 26
Calculation priority 26
CAPS 23
CHAIN 156
Character array variable 29, 62,79
Character code 243, 327
Character coordinates 31
Character mode specification 122
Character registered variable 29
Character string format specification 265
Character variable 62, 192
CHR$ 93, 245
CLEAR 158
CLS 56, 161
CNT 270

Colon (:) 54

COR

Comment statement
Common logarithm
Conditional expression
Conditional jump
CONT

Control variables
Correlation coefficient
COSs

D

DATA

Data area

Debug

DEG

DEGREE

DELETE

DIM

Dimension

Direct mode

Display contrast control
Display of number of digits
Displaying patterns
DMS$

Dot

DRAW

DRAWC

E

E

EDIT
Editing key
END

Enter key
EOX

EOY
ERASE
Error message
EXP

270

209

223
47,128, 186
186

131

78

90, 270

217

205

159

40

241
154, 216
132

79, 162
64

22

18

69

95

259

101
101, 167
101, 167

69, 312
134
24,134
48,170
18, 38
87,274
87,274
171
323
226



INDEX

Exponential regression

F

File attributes

File name

Final value

Fixed variables
FOR~TO~STEP/NEXT
Format character string
FRAC

Function mode

G

GET

GosusB

GOTO

GRAD

Graphic coordinates
Graphic characters

Graphic mode specification

H
Half-precision
HEX$
HYPACS
HYPASN
HYPATN
HYPCOS
HYPSIN
HYPTAN

|
IF~THEN~ELSE
Increment
Initialization
INKEY$

INPUT

INT

91

150
128
172

29

59, 172
263
232

24

177
60, 180
48,184
154,215
31,101

93

122

28,69
260
221
221
221
221
221
221

47,186
172

45

257

43, 46, 189
230

Jump

L
LEFT$
LEN
LET
LGT

Linear regression coefficient
Linear regression constant term

LIST

LLIST

LOAD

LOCATE

LOG

Logarithmic regression
Loop

LPRINT

LRA

LRB

M

Main power source
Main program
Main routine
MEANX

MEANY

Message

MID$

MOD
Multistatement

N

Natural logarithm
Nesting

NEW

NEW ALL

Null-string

Number of bytes used

331

47,180, 184

252
256
195
223
87,274
87,274
137
137
139
196
223

91

172
122,198
87,274
87,274

15
180

60

87,272
87,272
44

254

26, 27, 312
54

223
181
143
143
164

32



INDEX

Numerical array 67
Numerical array variable 67
Numerical format specification 264
Numerical registered variable 29
Numerical variable 29, 62, 192
(0]

One-dimensional arrays 65
P

PASS 144
Password 141
Pattern cursor 97
PEEK 242
Pl 238
Plotter command 123
Plotter-printer with cassette interface 100
POINT 101, 117, 266
POKE 197
Power regression 92
PRINT 43, 48,198
PRINT command expanded function 202
PROG 146
Program areas 41
Program modification 52
PUT 203
R

RADIAN 154, 216
RAM expansion pack 17
Random number 239
READ 205
Registered variable 30, 190
Relational operators 28
REM 45, 209
RESTORE 205
RETURN 180
Return key 18, 38
RIGHTS$ 253

RND
ROUND
RUN

S

SAVE

Screen display control
SDX

SDXN

sDY

SDYN

Semi colon (;)
SGN

Shift mode
SIN
Single-precision
SQR

Starting address
STAT

STAT CLEAR
STAT LIST
STAT LLIST
STOP

STR$
Subroutine
SUMX

SUMX2
SUMXY
SUMY

SUMY2
SYSTEM

T

TAB

TAN

Ten keys
Trace mode
TROFF
TRON

332

239
236
147

148

53
87,273
87,273
87,273
87,273
46, 48
234

23

214
28,69
222
160
88, 268
88, 269
87, 269
87, 269
210
250
60, 180
87,27
87,27
87,27
87,271
87,27
65, 161

53, 261
218

35

212
212
212



INDEX

Two-dimensional array 66
U

Unconditional jump 184
USING 54, 263
\'

VAL 247
VERIFY 153
Wait loop 175

333



GUIDELINES LAID DOWN BY FCC RULES FOR USE OF THE UNIT IN THE U.S.A. (not
applicable to other areas).

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in
strict accordance with the manufacturer’s instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installation. However, there is no guarantee
that interference will not occur in a particular installation. If this equipment does cause interference to
radio or television reception, which can be determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the following measures:

..... reorient the receiving antenna

..... relocate the computer with respect to the receiver

. move the computer away from the receiver
..... plug the computer into a different outlet so that computer and receiver are on different branch
circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional
suggestions. The user may find the following booklet prepared by the Federal Communications Commission
helpful: “How to Identify and Resolve Radio-TV Interference Problems’’ This booklet is available from the
US Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.

334



Epilogue

This manual overhaul is dedicated to Alex Istomin, aka HWRO, you were a giant,
my friend.

I decided to scan in this manual because there wasn't one available Online and I
thought I might be able to give something back to the Pocket Computer
community that has given me so much over the years. This was a labour in love,
completed between March 15 to July 27, 2024. It was scanned in page by page
using a Brother DCP-135C all-in-one printer/scanner (Thank you VueScan for still
supporting my ancient scanner!), edited in GIMP and OCR-ed with Acrobat Pro. I
completely re-drew all tables and about 90% of the graphics from scratch, corrected
obvious errors (spelling, code and others). I added a page on character coding for
Kana mode PB-770s (Japanese models, or modded European ones). The TOC, index
and hopefully all keyword references have been linked. I'll upload two versions, a
colour scan (cover only) and a Kindle/bandwidth friendly monochrome version. If
you find any huge errors that might have slipped in during editing, please let me
know. Most of you know how to get in touch with me.

-R. Swartz 2024



CASIO.




	Front cover
	Title page
	Introduction
	TOC I
	TOC II
	TOC III
	TOC IV
	TOC V
	Outline
	Chapter 1 - General Guide
	1-1 Prior to Operation
	1-2 System Configuration and Peripherals
	1-3 Battery Maintenance
	1-4 RAM Expansion Pack
	1-5 Nomenclature and Operation
	1-6 Test Operation

	Chapter 2 - Key Operation And Display
	2-1 Key Functions in Direct Mode
	2-2 Key Functions in Shift Mode
	2-3 Caps Mode
	2-4 Key Functions in Function Mode
	2-5 Editing And Special Key Functions
	2-5-1 Key Functions in Kana Mode
	2-6 Calculation Functions
	2-7 Variables
	2-8 Display Screen
	2-9 Number of Bytes used for Variables

	Chapter 3 - BASIC Reference
	3-1 Introduction to Basic
	3-2 Using the Keys
	3-3 Variables and Assignment
	3-4 Using Variables
	3-5 Program Entry
	3-6 BASIC Programming [1]
	3-7 BASIC Programming [2]
	3-8 Program Execution
	3-9 Display Screen Configuration
	3-10 Repeat Program Execution
	3-11 Sum Total Program
	3-12 Character Variables
	3-13 What Is a Dimension
	3-14 Numerical Array Variables
	3-15 Numerical Array Programming
	3-16 Character Array Variables
	3-17 Combination of String and Numerical Arrays
	3-18 Statistical Functions
	3-19 Using Graphic Characters
	3-20 Displaying Patterns
	3-21 PB-770 Graphic Functions
	3-22 Graphic Commands and Screen Coordinates
	3-23 Drawing a Curve
	3-24 Drawing a Line Graph
	3-25 Preparation For Drawing a Bar Graph
	3-26 Two Examples of Bar Graph Programs
	3-27 Animation Drawing
	3-28 Game Applications
	3-29 Drawing a Pattern With the Plotter-Printer
	3-30 Using the Plotter
	3-31 Using PB-700 Programs

	Preface to Chapter 4
	Chapter 4 - Command Reference
	4-1 Manual Commands
	AUTO
	CONT
	DELETE
	EDIT
	LIST / LLIST
	LOAD
	NEW / NEW ALL
	PASS
	PROG
	RUN
	SAVE
	SYSTEM
	VERIFY

	4-2 Program Commands
	ANGLE
	BEEP
	CHAIN
	CLEAR
	CLS
	DIM
	DRAW / DRAWC
	END
	ERASE
	FOR ~ TO ~ STEP / NEXT
	GET
	GOSUB / RETURN
	GOTO
	IF ~ THEN ~ ELSE
	INPUT
	LET
	LOCATE
	POKE
	PRINT / LPRINT
	PUT
	READ / DATA / RESTORE
	CAUTION DATA Statements

	REM
	STOP
	TRON / TROFF

	4-3 Numerical Functions
	SIN
	COS
	TAN
	ASN, ACS, ATN
	HYPSIN/HYPCOS/HYPTAN
	HYPASN/HYPACS/HYPATN
	SQR
	LOG, LGT
	EXP
	ABS
	INT
	FRAC
	SGN
	ROUND
	PI
	RND
	DEG
	PEEK

	4-4 Character Functions
	ASC
	CHR$
	VAL
	STR$
	LEFT$
	RIGHT$
	MID$
	LEN
	INKEY$
	DMS$
	HEX$

	4-5 Display Functions
	TAB
	USING
	POINT

	4-6 Statistical Commands / Functions
	STAT
	STAT CLEAR
	STAT LIST / STAT LLIST
	CNT
	COR
	SUMX / SUMY / SUMX2 / SUMY2 / SUMXY 
	MEANX / MEANY
	SDX / SDY / SDXN / SDYN
	EOX / EOY
	LRA / LRB

	4-7 Other
	&H


	Chapter 5 - Program Library
	Stock Price Management And Proper Selling/Buying Prices
	Telephone Directory
	Cross Total
	Graph Making Program

	Chapter 6 - Reference Material
	6-1 PB-770 Command Table
	6-1-1 Operational Symbols
	6-1-2 Special Character
	6-1-3 Built-in Functions
	6-1-4 Character Functions
	6-1-5 Display Functions
	6-1-6 Statistical Functions
	6-1-7 Manual Commands
	6-1-8 Program Commands

	6-2 Error Message Table
	6-3 Character Code Table
	Specifications

	Index I
	Index II
	Index III
	Index IV
	FCC Guidelines
	Epilogue
	Back Cover

