

Personal Computer

PB-770
OWNER'S MANUAL

®

INTRODUCTION

Carrying the compact PB-770 personal computer is equivalent to taking
along the capacity of a tabletop model. RAM (Random Access Memory)
can be expanded up to 32K bytes, which gives you a broad range of
30,000 character storage.
Writing (storing) data in the RAM is an easy process using the BASIC
language programming described in this manual. And once the data you
want has been stored, it can be read selectively anytime or changed to
suit new applications. Remember, a computer is worthless without a
program, so the more you learn about BASIC language programming,
the more you will be able to utilize the many advantages of personal
computing.
Once you have seen how well the PB-770 can serve you, its functions can
be broadened by connecting an optional plotter-printer with cassette
interface. Th is allows the fast preparation of expressive 4-color graphs
and tables.
You can be sure that the more you use the PB-770 the closer a com pan ion
it will become. The aims of this manual are to first build your familiarity
with this clever personal computer so you can start to make full use of it
in your daily life.

3

CONTENTS

CHAPTER 1 GENERAL GUIDE

1-1- PRIOR TO OPERATION 12

1-1- SYSTEM CONFIGURATION AND CONNECTIONS 13

1-1- BATTERY MAINTENANCE 15

1-1- RAM EXPANSION PACK (OPTIONAL) 17

1-1- NOMENCLATURE AND OPERATION 18

1-1- TEST OPERATION 19

CHAPTER 2 KEY OPERATION AND
DISPLAY

2-2- KEY FUNCTIONS IN THE DIRECT MOD� 22

2-2- KEY FUNCTIONS IN THE SHIFT MODE 23

2-2- CAPS MODE 23

2-2- KEY FUNCTIONS IN THE FUNCTION MODE. 24

2-5 EDITING AND SPECIAL KEY FUNCTIONS 24

2-6 CALCULATION FUNCTIONS 26

2-7 VARIABLES 29

2-2- DISPLAY SCREEN 31

2-9 NUMBER OF BYTES USED FOR VARIABLES32

CHAPTER 3 "BASIC" REFERENCE

3-3- INTRODUCTION TO BASIC 34

3-3- USING THE KEYS35

3-3 VARIABLES AND ASSIGNMENT 37

3-3- USING VARIABLES 39

3-3- PROGRAM ENTRY40

3-3- BASIC PROGRAMMING (1]42

3-7 BASIC PROGRAMMING [2]45

3-3- PROGRAM EXECUTION 51

3-3- DISPLAY SCREEN CONFIGURATION 53

3-10 REPEAT PROGRAM EXECUTION 55

3-11 SUM TOTAL PROGRAM 59

4

2-5-1 KEY FUNCTIONS IN KANJI MODE 25a

CONTENTS

3-12 CHARACTER VARIABLES 62

3-13 WHAT IS A DIMENSION? 64

3-14 NUMERICAL ARRAY VARIABLES 67

3-15 NUMERICAL ARRAY PROGRAMMING 72

3-16 CHARACTER ARRAY VARIABLES 79

3-17 COMBINATION OF STRING ARRAYS
AND NUMERICAL ARRAYS 83

3-18 STATISTICAL FUNCTIONS 87

3-19 USING GRAPHIC CHARACTERS 93

3-20 DISPLAYING PATTERNS 95

3-21 PB-770 GRAPHIC FUNCTIONS 100

3-22 GRAPHIC COMMANDS AND

SCREEN COORDINATES 101

3-23 DRAWING A CURVE 106

3-24 DRAWING A LINE GRAPH 108

3-25 PREPARATION FOR DRAWING A BAR GRAPH 110

3-26 TWO EXAMPLES OF BAR GRAPH PROGRAMS 112

3-27 ANIMATION DRAWING 115

3-28 GAME APPLICATIONS 119

3-29 DRAWING A PATTERN WITH

THE PLOTTER-PRINTER 122

3-30 USING THE PLOTTER-PRINTER 125

3-31 USING PB-700 PROGRAMS 127

Preface to Chapter 4 128

CHAPTER 4 COMMAND REFERENCE

4-1 MANUAL COMMANDS 130

AUTO ... 130

CONT ... 131

DELETE .. 132

EDIT .. 134

LIST/LUST 137

5

CONTENTS

LOAD ... 139

NEW/NEW ALL 143

PASS .. 144

PROG ... 146

RUN .. 147

SAVE .. 148

SYSTEM .. 151

VERIFY .. 153

4-2 PROGRAM COMMANDS 154

ANGLE .. 154

BEEP .. 155

CHAIN ... 156

CLEAR .. 158

CLS ... 161

DIM ... 162

DRAW/DRAWC 167

END .. 170

ERASE ... 171

FOR~ TO~ STEP/NEXT 172

GET ... 177

GOSUB/RETURN 180

GOTO ... 184

IF~THEN~ELSE 186

INPUT ... 189

LET ... 195

LOCATE 196

POKE .. 197

PRINT/LPRINT 198

PUT ... 203

READ/DATA/RESTORE 205

REM .. 209

STOP .. 210

TRON/TROFF 212

6

CONTENTS

4-3 NUMERICAL FUNCTIONS 214

SIN ... 214
cos ... 217

TAN .. 218
ASN, ACS, ATN 219

HYPSIN/HYPCOS/HYPTAN 221

HYPASN/HYPACS/HYPATN 221

SOR ... 222

LOG, LGT · 223

EXP ... 226
ABS ... 228

INT ... 230

FRAC ... 232

SGN ... 234

ROUND .. 236

Pl .. 238

RND .. 239

DEG .. 241

PEEK .. 242

4-4 CHARACTER FUNCTIONS 243
ASC ... 243
CHR$.. 245
VAL .. 247
STR$.. 250
LEFT$, 252

RIGHT$.. 253
MID$.. 254

LEN ... 256
INKEY$.. 257
OMS$.. 259

HEX$.. 260

4-5 DISPLAY FUNCTIONS 261

TAB ... 261
USING ... 263
POINT ... 266

7

CONTENTS

4-6 STATISTICAL COMMANDS/FUNCTIONS 268

STAT .. 268

STAT CLEAR 269

STAT LIST/STAT LUST 269

CNT ... 270

COR .. 270
SUMX/SUMY /SUMX2/SUMY2/SUMXY 271

MEANX/MEANY 272

SDX/SDY/SDXN/SDYN 273

EOX/EOY 274

LRA/LRB 274

4-7 OTHER 275

&H ... 275

CHAPTER 5 PROGRAM LIBRARY

STOCK PRICE MANAGEMENT AND PROPER
SELLING/BUYING PRICES 278

TELEPHONE DIRECTORY 287

CROSS TOT AL 294

GRAPH MAKING PROGRAM303

CHAPTER 6 REFERENCE MATERIAL

6-1 PB-770 COMMAND TABLE312

6-2 ERROR MESSAGE TABLE 323

6-3 CHARACTER CODE TABLE 327

EPILOGUE .. 336

8

SPECIFICATIONS 328

OUTLINE

The many features of the PB-770 personal computer present an interest­
ing challenge to the beginner, but there is no instant route to total under­
standing of its varied uses.
The step-by-step approach is by far the best path to familiarity with each
function, and it is usually found that computing skill is gained in direct
proportion to time spent on the keys.
So this manual is laid out to introduce the personal computer in an
easy way by providing various practice programs in BASIC while training
you in actual key operation.

Of primary importance is learning the correct handling of the PB-770.
Chapter 1 lays out its features and basic usage procedures. Chapter 2
covers the functions of each key and the display screen preparatory to
learning BASIC.
Fundamentally, a computer stores and computes. Chapter 3 sets out to

explain how a BASIC program can be prepared to store volumes of data
in the PB-770 by an "Array Programming" method for recall whenever
required. It also outlines for the beginner the use of graphic program­
ming on the large display of the PB-770 and how to make use of the
operational plotter-printer with cassette interface.
Chapter 4 is for the user who has already mastered BASIC. It explains in
detail how to use many of the commands and functions of the PB-770.
We do not recommend that the beginner learns all commands from this
chapter in series. Only 10 BASIC commands are necessary to form a
good structural knowledge.
Chapter 5 gives representative programs for use with the PB-770. They are
practical, easy to apply, and may be rearranged for specific applications.

9

CHAPTER 1

GENERAL
GUIDE

1-1 PRIOR TO OPERATION

The PB-770 is a product of CASIO's strict testing process, high level
electronics technology, and strict quality control.
To ensure long life and trouble-free operation, please observe the follow­
ing precautions.

■IMPORTANT

• This computer is constructed of precision electronic components.
Never attempt disassembly and/or maintenance. Special care should
also be taken to avoid damage by bending or dropping. Do not carry
the computer in your hip pocket.

• Use only the optional F A-10 plotter-printer with cassette interface,
F A-11 plotter-printer with standard cassette tape recorder and cassette
interface, or F A-4 printer interface (CENT RON ICS standard) with
cassette interface. Never connect any other peripheral equipment to
the connector of this unit.

• Avoid temperature extremes. Do not store this unit in an automobile,
near a heater, or any other location where it may be exposed to high
temperatures. Also avoid use and/or storage in areas subject to high
humidity and dust. Extremely low temperatures can slow display
response or cause the display to cease operating. Normal operation
will return when the temperature is brought back to normal.

• Clean the unit by wiping its surface with a soft, dry cloth or a cloth
dampened with a neutral detergent. Never use such liquids as thinner
or benzine.

• Before assuming malfunction, first check the power supply and con­
firm that there are no programming errors.

• Should service be required, contact your nearest dealer.

12

1-2 SYSTEM CONFIGURATION AND
CONNECTIONS

F A-11: Plotter-printer with standard cassette tape recorder and cassette
interface

F A-10: Plotter-printer with cassette interface
CM-1: Microcassette tape recorder
F A-4: Printer interface (CENTRON I CS standard) with cassette interface
OR-8: RAM expansion pack (8K bytes)

■ Connecting to another PB-770 (Unit-to-unit programs/data transference)

■ Connecting·an F A-11

■ Connecting an FA-10

13

CHAPTER 1 GENERAL GUIDE

■ Connecting an F A-4

14

1-3 BATTERY MAINTENANCE

■ Battery Loading
Turn the power of the PB-770 OFF. Turn
the computer over and slide open the
battery compartment lid (Fig. 1).
Load four AA size batteries. Batteries may
burst if not installed correctly. Always
ensure that the polarities of the batteries
are correct. Load the batteries so that their
minus (-) poles are contacting the springs
located in the battery compartment (Fig. 2).
Mixing old and new batteries will consider­
ably shorten overall battery life. Therefore,
always load or replace a full set of new
batteries.
Battery leakage can damage the unit and
cause malfunction. Always remove batteries
when the unit is not used for extended
periods.

■ Battery Replacement
When the buzzer sound produced by the
BEEP command weakens or when the
display becomes blank, replace the bat­
teries with new ones. (For battery specifi­
cations, see page 329.)

■ Power Source Configuration
Since the PB-770 power source is divided
into a main power source and a sub power
source for RAM backup (Fig. 3), programs
or data in the mainframe are not lost during
main power source or sub power source
battery replacement. Programs or data are
only lost when the main and sub power
sources are removed at the same time.

* In order to prevent the chance of malfunction due to battery leakage,
be sure to replace the main batteries and RAM backup battery every 2
years regard less of how much they are used.

* With the main batteries removed, the sub battery protects RAM for
approx. 4 months when RAM capacity is standard 8K bytes (approx.
1 month when RAM capacity is expanded to 32K bytes).

15

CHAPTER 1 GENERAL GUIDE

* When both the main batteries and the RAM backup battery are re­
placed, be sure to enter NEW ALL after replacing batteries.

* Keep batteries away from children. If swallowed, contact a physician
immediately.

■ Auto Power Off
Power is automatically switched off approximately 6 minutes after the
last key operation (except during program execution) to conserve power.
Power can be restored by pressing the � key or turning the power
switch OFF and then ON again.

■ Low-voltage Detection Feature
The Low-voltage Detection feature of the PB-770 protects RAM contents
when the voltage of the main batteries drops below a certain level.
When the voltage decreases, the whole display becomes blank or the dis­
play during program execution blinks, and the PB-770 is no longer oper­
able. The batteries must then be immediately replaced. RAM contents
will be altered by switching the unit ON with dead batteries installed.

16

1-4 RAM EXPANSION PACK (OPTIONAL)

Fig. 1 Turn power OFF. The basic unexpanded RAM capacity of
the PB-770 is 8K bytes. The RAM capacity
can be expanded up to a maximum of 32K
bytes by installing optional OR-8 RAM
expansion packs.
One RAM expansion pack provides 8K
bytes. Expansion packs are installed by the
following procedure.

Insert the RAM Expansion
Pack as shown above.

Fig. 2 Slide the holder in the
direction of the arrow.

Fig. 3 RAM Expansion Pack
insertion sequence.

RAM 3 RAM 2 RAM 1

(1) Turn off the power of the PB-770.
(2) Turn over the PB-770 and remove the

RAM box cover by pressing the two
catches.

(3) Holding the sides of the OR-8 RAM ex-
pansion pack, insert it into the far right
position of the unit (Fig. 1).
Since RAM is very sensitive to static
electricity, be careful not to touch the
terminals of the OR-8.

(4) Lightly press the holder and slide it
into a locked position (Fig. 2).

(5)

(6)

Install the required number of RAM ex­
pansion packs. Then replace the RAM
box cover and turn the power of the
PB-770 ON.
Enter NEW ALL . Then confirm
the RAM capacity by entering

(7) Install the RAM Expansion Packs in the
sequence of 1-2-3 (Fig. 3).
If a RAM Expansion Pack is installed in
position 2 skipping position l, correct
functions cannot be performed.

17

1-5 NOMENCLATURE AND OPERATION

• Display contrast control ... Adjust so the display can be easily read.

• Alphabet keys Used to display upper-case letters. When

Example:

the alphabet keys are pressed while hold­
ing down the key, lower-case letters
are displayed.
Commands or symbols printed above
each key can be displayed by pressing
the alphabet keys while holding down
the key (one key commands).
Functions printed below each key can be
displayed by pressing the alphabet keys
while holding down the [TI key (one key
functions).

SYSTEM ···SHIFT mode

[I) ···DIRECT mode
INKEY$ · • • FUNCTION mode

* Use the CHR$ function for symbols and characters which cannot be
input directly by pressing a key. (See page 245.)

) Used to perform BASIC command or
program input and output and to execute
data input and output.

• Return key (

• Enter key () Used to execute an instruction during
manual calculations.

Example: [Il @l (Z) � ➔ 3

• See "2-5 Editing and Special Key Functions" in Chapter 2 for the
detailed use of each key.

Display contrast
control

Function key

CAPS key

Display

Shift key Alphabet keys

FA-10, FA-11 or FA-4 connector

Power switch

Return key Enter key

18

1-6 TEST OPERATION

This is a demonstration program to show the functions of the PB-770. If
you have trouble inputting the program correctly, refer to Chapters 2
and 3.
With this program you will be able to see various functions of the display
screen, the BEEP command and the execution speed of graphic com­
mands.

10 CLS

20 LOCATE 3,1:PRINT "PB-770 TESTING"

30 FOR A=31 TO 0 STEP -1

40 DRAWC0,A)-(159,A)

50 NEXT A

60 LOCATE 5,1:PRINT "BEEP SOUND"

70 FOR A=0 TO 9

80 BEEP 1:BEEP 1:BEEP 0

90 NEXT A

100 CLS

110 FOR A=33 TO 255

120 PRINT CHR$(A);

130 NEXT A

140 FOR A=0 TO 20

150 NEXT A

160 CLS

170 FOR A=l TO 16

180 DRAWCA+2,16-A)-(Ai3,16-A)-CAi3,15+

A)-CA+2, 15+A)-(A+2, 16-A)

190 NEXT A

200 FOR A=0 TO 200

210 NEXT A

19

KEY OPERATION
AND
DISPLAY

CHAPTER 2

2-1 KEY FUNCTIONS IN DIRECT MODE

When a key entry is made in direct mode, the character or function
inscribed on the key is input.

[Kl - [II
[ill)

Upper-case alphabetic characters
Space (blank)

0, @J, [I), IT), 0, (I) Symbols
Numbers @)- (ID

[:] Decimal point

[±), B, 0, 0 Arithmetic symbols

!ill)
@ill
�

�
(B, §)

0

r@

Display clear
Character delete
Break (execution halt)
Manual calculation execution
Program input and execution
Cursor movement (left, right)
SH I FT mode designation
CAPS mode designation
FUNCTION mode designation
Answer key (Most recent calculation result)

■ Number of characters in one statement

A maximum of 79 characters can be entered in a calculation formula
during manual calculation or in one line during BASIC programming.

Key Functions In Direct Mode

22

2-2 KEY FUNCTIONS IN SHIFT MODE

When the � key is held down and another key is pressed, the brown
character, symbol, etc. printed above each key is input.
26 different one-key commands are provided.

Symbols

Character, symbol insertion

Program area designation

Previous line display in the EDIT mode (see page 134.)

Cursor movement (up, down}

Cursor movement (to the beginning of a statement)

Recall function

Key Functions In Shift Mode

2-3 CAPS MODE

Lower-case letters are input by holding down the @IBl key and pressing
another key.

23

2-4 KEV FUNCTIONS IN FUNCTION MODE

When the key is held down and another key is pressed, the respective
function noted below each key is input.

2-5 EDITING AND SPECIAL KEV FUNCTIONS

(1) (SPACE) Blank entry in all key modes.

(2) (Clear screen/Home) Clears the display and moves the
cursor to the top left of the display.

only moves the cursor to the beginning of a
statement while the display remains as it is.

(3) (Delete/Insert) Deletes the character or symbol at the
cursor position, and shifts the characters or symbols at the
right of the cursor to the left.

shifts the characters or symbols at the right of the
cursor to the right and inserts a blank.
A repeat function allows the continuous deletion of cha­
racters or insertion of spaces when or is held
down.

(4) (Break) Suspends calculation and program execution. Also
used to turn the power ON when auto power off has been
activated.

(5) Moves the cursor left, right, up, down. The repeat function
is available only for left, right movement.

(6) (Enter) Executes manual calculation. During key input
wait in an INPUT statement, functions as . Assignment
statements, commands, and statements cannot be executed
with

24

[ill)

.

.

.

.

. . .

.

2-5 EDITING AND SPECIAL KEY FUNCTIONS

tion. Also stores the numerical value output by a PRINT or
LPRI NT statement.

{8}

Example:

Pressing activates a recall function that displays the
last calculation formula executed using the key, the
last program statement stored using the key, etc.
Example:

(Shift) The shift mode is specified by holding down this
key. The unit automatically returns to the direct mode
when this key is released.

(11) ... (Capital shift) The CAPS mode is specified by holding
down this key. The unit automatically returns to the direct
mode when th is key is released.

{12) ... (Function) The function mode is specified by holding
down this key. The unit automatically returns to the direct
mode when th is key is released.

(13) ... The line in which an error occurred will be displayed for
correction by pressing this key immediately after the error
is generated during program execution.

25

3,4 * 5 ➔ 17

5.8 * 3 - ➔ 0.4

{7) Stores the result of a previously executed manual calcula­

100 * 5 ➔ 500
➔ 100 * 5

P ress1ng . will suspend the execution of a program.
Execution can be resumed using the CONT command .

.....(Return/Line back} Inputs programs and executes com­
mands. Manual calculations cannot be executed using this
key. The previous line can be displayed in the EDIT
mode (see page 1 34) by

(10) ...

(9) ... Specifies a program area and executes the
program in the specified area from the first line.

When Kana mode is active after pressing the

symbol noted below each key is input. Note that Kana mode differs

25a

Key Functions In Kana Mode

key, the respective

 key from other modes like CAPS in that it stays active until the

is pressed again.

Key Functions In Kana+SHIFT Mode

2-5-1 KEV FUNCTIONS IN KANA MODE
Japanese or modded European PB-770s only

When Kana mode is active and the key is pressed in

combination with one of the keys below, the respective symbol

shown in the illustration below is displayed.

2-6 CALCULATION FUNCTIONS

■ Calculation Precision and Functions
All internal calculations are performed with a 12 digit mantissa(+ 2 digit
exponent). Since decimal base operation is used, high precision calcula­
tions can be performed.

Manual calculations are executed with the key.
Calculation results are displayed with a 10 digit mantissa (+ 2 digit ex­
ponent). In this case, the 11th digit of the mantissa is rounded off.

■ Operator Functions
A Power
+, -

*• I

MOD

Addition, Subtraction
Multiplication, division
Remainder calculation (If the numerical value includes a frac­
tion, the fraction is discarded in this operation.)

The calculation range is as follows.
(1) Division by 0 causes an MA error.
(2) When overflow occurs (i.e. when a result exceeds the calculation

range), an OV error is generated.
(3) Power range

0 A0
(±x)A0
0Ay
0"(-y)
(-x)A(±y)

MA error
1

MA error
Possible only when y is an integer.
Otherwise, an MA error is generated.
* Where x > 0, y > 0.

■ Calculation Priority
Calculations are executed in the following sequence.
1. Elements in parentheses
2. Functions
3. Powers("')
4. Plus(+) and minus(-) signs
5. *· I

6.MOD
7.+, -

26

0

Formats

1 . X+Y
- (X+Y)/22

2. X2+ 2 X Y + Y2 - x A 2+2*x*Y+YA 2

3. -Y2
- -YA2

4. (-Y)2
- (-Y) A2

5. (XY)2
- XAYA2

6. X v
2

- XA (y A 2)

7 . Remainder of � - X MOD y

Examples

0.5A0 - 1

2. -0.5A0 - -1

3. (-0.5) A0 - 1

4. 0.5 A2 - 0.25

5. 0.5A-2 - 4

6. (-0.5) A-2 - 4

7. 0.5A0.5 - 0.7071067812

8. (-0.5) A0.5 -MA error

9. 2A-0.5 - 0.7071067812

10. (-2) A-0.5 -MA error
11 . 10 MOD 6 - 4

12. -10 MOD 6 - -4

13. 10 MOD-6 - 4

14. -10MOD-6 - -4

1 .

2-6 CALCULATION FUNCTIONS

27

CHAPTER 2 KEY OPERATION AND D/SPLA Y

■ Relational Operators

Relational operators can only be used in an IF statement (see page 186).
= Equal
< >, > < Not equal
< Smaller than
> Larger than
=>, >=

=<, <=

Either larger than or equal to.
Either smaller than or equal to.

Examples: A + B < > 0 ... The result of A + B does not equal 0.
A$< > "Y" ... The content of A$ does not equal "Y".
A$= CHR$(84) + CHR$(79) + CHR$(77) ... A$ equals "TOM".
CH R$(67) > CHR$(N) ... CH R$(67), which is C, is larger than CH R$(N)

in the Character Code Table (page 327).

■ Operations Using Variables

The contents of variables can be confirmed with the key.

Example: A ➔ 0

When a numerical value is entered in a variable, the contents of the vari­
able are as follows.

Single-precision:

Half-precision:

Everyting from the 13th digit of the mantissa to the
right is discarded (12 digits). Single-precision is the
normal calculation precision.
Everything from the 6th digit of the mantissa to the
right is discared (5 digits). Half-precision is 5 digit
numerical values realized by specifying an array vari­
able (!). It can only be specified in an array variable.
(See page 70).

Half-precision computation
Storage of a half-precision value requires only 4 bytes as opposed to the
8 bytes needed for a single precision value. Except for engineering or
scientific applications, 5 digits are usually sufficient for most computa­
tions. If computation results concerning such data as test results, percen­
tages, product numbers, prices and quantities can be kept within 5 digits,
the amount of RAM area required for data storage is halved and memory
space is conserved.

28

2-7 VARIABLES

■ Kinds of Variables
The PB-77O employs the following types of variables.

(1) Numerical variables
Numerical fixed variables (up to 12 digits).
Numerical registered variables (up to 12 digits).
Numerical array variables (Half-precision numerical array: up to 5
digits. Single-precision numerical array: up to 12 digits).
* The number of digits shown above is the number of internal calcula­

tion digits.

(2) Character variables
Character fixed variables (up to 7 characters).
Character registered variables (up to 16 characters).
Character array variables (String length can be specified from 1 to 79
characters. When no length is specified a default value of 16 is auto­
matically used.}.

Example:

DIM A$(9, 9) Each character string can be 1 to 16 characters
long.

DIM A$(9, 9)* 50 Each character string can be 1 to 50 characters
long.

■ Fixed Variables (A-Z, A$-Z$)

Memory where numerical values or characters are stored has 26 kinds of
Fixed Variables which are A-Z or A$-Z$. Numerical fixed variables and
character fixed variables with identical names cannot be used together.
If an attempt is made to use identical variable names, a UV error will
occur.

Incorrect Usage: 10 PRINT A; A$ ---> UV error

29

CHAPTER 2 KEY OPERA T/ON AND DISPLAY

■ Registered Variables

In addition to fixed variables, variable names with two characters that
consist of either 2 upper-case alphabetical characters or an upper-case
alphabetical character and a number, can be used. If a variable name is
defined with three characters or more, an SN error will occur during
execution.
Examples: A B, X 1 , Y 1 , X 2, Y 2, A Z $, A A $, B 1 $, Z 9 $

• The beginning of a variable name must be an upper-case alphabetical
character.

• Reserved words (IF, TO, Pl, etc.) cannot be used as variable names.
• A 12-digit mantissa+ and 2-digit exponent can be stored in a numerical

registered variable (AB, X1, etc.).
• Up to .16 characters can be stored in a character registered variable.
• 40 registered variables including array variable names can be used. If

an attempt is made to use more than 40 variables, a VA error will
occur that will suspend execution. At this time, the variable names
should be cleared using the CLEAR or ERASE command.

• A registered variable name can be recalled by executing LISTV. A
numerical registered variable uses 8 bytes and a character registered
variable uses 17 bytes.

30

2-8 DISPLAY SCREEN

■ Character Coordinates

Twenty characters horizontally and four character lines vertically fit in
the display window (LCD). Character locations are expressed by a
LOCATE statement with the following coordinates.

LOCATE {X, Y) See LOCATE.
Based on the coordinates mentioned above, 222 characters in the charac­
ter code table (see page 327) can be displayed.

■ Graphic Coordinates
Dots can be located on the display based on the coordinates shown
below. Dot locations are expressed by a DRAW or DRAWC statement
which allows dots and straight lines to be drawn or erased.

DRAW (X, Y) See DRAW, DRAWC.

Whether a dot is lit or not can be confirmed using the POINT function.

POINT (X, Y) See POINT.

31

2-9 NUMBER OF BYTES USED FOR
VARIABLES

The remaining RAM capacity is reduced each time data are assigned to a
variable (except fixed variables) during program execution. The number
of bytes used for each type of variable is shown in the table below. Fixed
variables from A through Z store data separate from the RAM area so
they have no effect on the RAM capacity.

Number of Number of
Bytes Used Bytes Used

4

Numerical
variable 8

8

17

Character
variable 17

2-80

(1-79 characters)

Variable

Numerical
variable
(Half-precision)

Numerical
variable
(Single-
precision)

Character
variable
(Fixed-length)

Character
variable
(Defined-
length)

32

Variable

Array Variables Registered Variables

"BASIC"
REFERENCE

CHAPTER 3

3-1 INTRODUCTION TO BASIC

No doubt you have probably heard the word BASIC used at one time or

another. It stands for "Beginner's All-purpose Symbolic Instruction
Code", and it truly is one of the most basic of computer languages.
The beauty of this language is that it allows sophisticated programs to be

produced using simple English commands that resemble everyday conver­
sation.
BASIC was developed at a U.S. university in 1964 for use on a large,

main frame computer. Since then, however, it has grown in popularity

and is now probably one of the most commonly used computer languages.

In this chapter we will learn some of the fundamentals of BASIC that will
allow you to eventually develop and write programs of your very own.

34

3-2 USING THE KEYS

Although the PB-770 has a large data processing capacity and can per­
form complicated numerical calculations, it can also be used to perform
manual calculations without using programs.

To help us get used to the PB-770, let's start with a very simple operation.
The following is displayed after power is switched ON.

Ready P(2) (This means that the program area is specified to No. 0.)

The numerical keys (ten keys) on the right side of the keyboard are
mainly used when the PB-770 is employed as a calculator. 00 , [±], and
@) are not included with the ten keys as with a standard calculator.
Although @) is located within the set of main keys it cannot be used as
the § key on a standard calculator.
The[!) and 0 keys are used for 00 and l±l respectively, while the key
functions as the § key.

Let's try 1 +2. When you enter CD I±] w , is the following displayed?

Ready P0

1+ 2-
Lcursor

If you make a mistake, move the Cursor to the location of the mistake
using the §1 and Bl keys and input the correct value.
Next, when you press the key, the answer will be displayed as follows.

1 +2
3

35

CHAPTER 3 "BASIC" REFERENCE

Besides the four basic arithmetic functions, the PB-770 is also capable of
such operations as powers, trigonometric functions, inverse trigonometric
functions and logarithmic functions.

36

3-3 VARIABLES AND ASSIGNMENT

Now let's try another calculation.

5©(2)©(2)(2) X (1 + lll.©7)10, 8(2)©(2)(2)(2) X (1 + (2).lll7)H>

These expressions compound interest over 10 years and add it to the
principals. What is the simplest way to perform these two calculations?
Once a calculation expression is input, it is partially available for repeat
use.

Therefore,

Enter A = (1 + lll.(2)7)"Hl � and input the previous two ex­
pressions as

A * 5(2)1Z)(2)1Z)(2) , A * 81Z)(2)(2)(2)1Z)

and the calculation becomes easier to perform.
The value of (1 + e>.07) 10 is stored in A. This A is called a variable in
a program.
To assign numerical value to variable A, the following operation is
performed.

(Assign 176 to A) A = 176 �

(Left side) (Right Side)

Assignment is made to store the right side in the left side, so 176 is
assigned to A in this example. The assignment instruction is "= ". To
confirm that 176 is assigned to A, enter A which should display the
contents of variable A. Is 176 displayed?

This point is very important in understanding BASIC.
"=" is the assignment instruction and does not mean equal as used in
mathematics (except in a IF statement). For example, enter

A =

to assign the

A+1�

value of A+ 1 to A. Assuming that 176 is stored in variable
A. After the above expression is executed by the computer, 177 is assign­
ed to variable A. Enter A !ENTER I to confirm this.
Is the following displayed?

A
177

- (Cursor)

37

CHAPTER 3 "BASIC" REFERENCE

38

■ and §[]
It is also important to understand the difference between the and@0
keys. It should be noted that the @0 key was used to input A= 176 and the
 key was used to display the value of A in the previous operations.

The key is used the same as the keys on a standard calculator for dis­
playing an answer. This is called manual calculation.
The (Return) key, on the other hand, is used to execute the com­
mands of a BASIC program. For example, it is used to input a program, to
correct a certain part of a program, or to execute a BASIC command.

3-4 USING VARIABLES

An alphabetical character from A to Z or two characters (alphabetical
character + one character) such as AA, and Nl are used as variable
names. Variables with numerical values assigned as in the previous
section can be freely used in calculation expressions.
Now, let's practice. When you enter

A= 36 @J
B = 12 @l

36 is assigned to A, and 12 is assigned to B. Next, enter
A+ B

since is used "to display an answer" in a manual calculation. If 48
is displayed, perform the next step.

Mastering the use of variables results in a high degree of versatility. Soon,
however, you will realize that the simple examples shown above are
extremely limited; That is what brings us to programming. Actual pro­
gramming is not very difficult at all if you can understand how variables
are used.

39

3-5 PROGRAM ENTRY

First of all, let's look at the proper procedure for inputting a program. A
look at the keyboard of the PB-770 shows that the alphabetical keys are
laid out the same as on a standard typewriter keyboard. Now, perform
the following inputs.

@ill) � 0 � - Specifies program area P0.
(El (II@ � - Erases program stored in P0.

- Clears screen.

[Program]

10 CLEAR

20 A=A+1

30 LOCATE 7,2

40 PRINT A

50 GOTO 20

[Key Operation]

@ill) ��OJ 0 � � L...J indicates pressing
two keys simultaneously.

(I) 0 0 §0 (±]OJ�
(I) 0 [I) @)@] 0 [I) [II 0 0 (I) �
0 0@rfil cp0 �
rn 0 @ill!..___.� m 0 �

Enter [@[fil@) (El� or � . If correct entries were made, numerical
characters are displayed at the center of the screen at a high speed:
1
,

2
,

3

If "SN error P(l) - line No." is displayed to indicate an entry error,
correct {debug) the specified line as follows.

� Line No.�

The specified line is displayed when you perform this operation. Move
the cursor to the point to be corrected, perform the correct input
and press the� key. The next line will be displayed, and, if no correc­
tion is required, press the � key. Then enter (fil@) (El � again. It
should be noted that the EDIT mode is used for program corrections.

40

3-5 PROGRAM ENTRY

 Program Areas

The PB-77O contains a total of 10 "program areas" numbered from P0
through P9. Each of the program areas is independent, so up to 10
programs can be individually stored in the unit, recalled when
needed and executed without affecting programs in the other
pro­gram areas.
When the power of the PB-77O is turned ON, "Ready P0" appears on
the display to indicate that the specified program area is P0. The � key
can be pressed at any time to display the currently specified
program area. The following operations are used to change the
program area from the one currently specified.

41

3-6 BASIC PROGRAMMING [1]

Now, let's try an actual BASIC program.
A program that obtains the area of a square as the one shown below is
prepared using the following sequence.
(1) Request input of the length of one side A.
(2) Multiply the entered numerical value by itself.
(3) Display the result.
(4) Return to (1).

10 INPUT A CD

20 B = A*A ··············· ®

30 PRINT B ®

40 GOTO 10 @

Now, input this program using the following procedure. Be sure to press
the keys correctly.

Power ON Ready P0 displayed.
NEW� � is an input key located on the right below the

alphabet keys.

10 ��A � Press the � and� keys simultaneously.

20 B=A*A � � is located in the ten keys.

30 � W B � Press the � and W keys simultaneously.

40 � � 10 � Press the� and � keys simultaneously .
.________.

Next, execute the program using the following procedure.

I@ (BJ @) (El � � rn can also be used . ._____,

42

3-6 BASIC PROGRAMMING /1 /

After this entry is made, ? is displayed. _ is called a cursor. Now,
enter

8.5�

and the next display should appear. If it does not appear, check if
there is a program input mistake with � t'8 � - Be careful not to
make mistakes concerning the difference between 0 and 0, and 1 and I.

RUN

? 8.5 Value of one side is 8.5.
72.2 5. Area is 72.25.

? - {Cursor) What is the value of one side ?

After confirming the execution of this program, let's analyze it.

"1 e>wis a line number which indicates the program execution sequence.
It is increased here by 1 e> for each line (to be explained later). INPUT
means to make an entry, or, in other words, " ? " is displayed to indicate
that the computer is waiting for an entry. After an entry is made, the
command stores it in a numerical variable.

20 B = A * A Assign the result of A * A to B.
Line 20 computes the area. The entered numerical value is multiplied by
itself to provide the area of a square, and the result is assigned to B.

Line 30 displays the area. PRINT is used as a "display" instruction. This
line provides the instruction to display the contents of B.

GOTO is a command that means "go to" the line with the number that
follows the command.

43

CHAPTER 3 "BASIC" REFERENCE

The
program

basics of
should

the
be

comman
understood

ds (INPUT,
after this

PRINT, and
explanation.

GOTO)
However,

used in this
this

input
program

for
is
"?"

somewhat
should be, or

imperfect
what kind

because
of

it does
computation

not
result

indicate
is

what
provided

the

the
when this

following
program

procedure.
is executed. Therefore, let's add to this program with

Ready P0 displayed.
Press� and tfi keys simultaneously.

of
After

A,
the
then

line
enter

10 is
GJ 0

displayed,
@) GJ

press
�cb0

1B to
�

move
.

the cursor to the location

The modified result is as follows�
10 INPUT "A="; A

L when a message is inserted, a semicolonA message with
side

the
" "
__T

is
characters

displayed
in
.

(;) is

ul

required
not to

before
enter a

the
colon

variable.
(:) byBe

mistake
caref

.

Next, line 20 is displayed. Since this line is not to be changed, press
�.
Line

3e>

enterGJ0[[JIIJ0@g
is displayed

GJ
next ..

 l]]
Move

�.
the

The
cursor

modified
to the

result
location

is as
of B,

follows
and

.�c:b..........
3e> PR I NT � � B

Message is displayed inside" ".LB is displayed following message.

One space.

After
press�.

this, line 40 is displayed.

.

Since this line is not to be modified,

Now, let's execute the program

@) [[) @) [[] � @JID � can also be used.

as

Now
vious

the

this
program.
computation

program
This

is
is
result.

because
considerably

it asks "A=

improved
?" and

compared·
displays

with
"AREA

the
72.25"

pre­

44

3-7 BASIC PROGRAMMING [2]

Now let's look at another program that will help us get better acquainted
with BASIC. In this program, the multiples of a specified value are pro­
dtJced within the range of 0 to 200.

10 REM MULTIPLE�· · · · Press the� key at the end of each line.
20 A=0 �
30 INPUT "NUMBER'' ; N �
40 A=A+l �
50 B=N*A�
60 IF 8)200 THEN 100�
70 PRINT B; �
80 INPUT " OK"; C$ �
90 GOTO 40 �

100 END�

After you finish inputting the program, press and hold down the @ill) key
followed by the � key. Then, when you press the� key, the first
line of the program will be displayed. If there is a mistake in the first line,
move the cursor into position and correct the error.

[1] 10 REM MULTIPLE
-----r -----,-

See page 209.

Line number Command Label

A BASIC program consists of line numbers, instructions (program
instructions or part of an instruction), and variables or expressions that
use variables.
Since line 10 is a REM statement, a label is provided to indicate this is a
multiple program. Anything following REM is not executed. Now, press
the � key.

(2) 20 A= 0
-----r T

Line number Numerical variable (Fixed variable)

In line 20, a value of 0 is assigned to variable A as the first step of the
program. This is called variable initialization.

45

CHAPTER 3 "BASIC" REFERENCE

Note that until now all lines have been numbered in multiples of 10.
Actually, any line number between 1 and 9999 can be used in the
PB-77O. Numbering the lines of a program in multiples of ten makes the
program easier to read and modify.
Line 20 can also be expressed as follows.

See page 195. 20 LET A = 0

LET is an optional assignment command.
Now, press�.

[3] 30 INPUT "NUMBER" ; N
Input Line

number command
Message
statement

Variable
See page 189.

Since INPUT is an input command statement, execution is not shifted
to the next line unless the input of a numeral or character is performed
by a key entry. A numeral or character that is entered is assigned to
the variable following the message statement, and execution proceeds to
the next line.
Although the message statement can be omitted, it is used to tell the
operator what kind of data should be input.
When " ; " is placed after the message statement of IN PUT, " ? " is
displayed after the message. If"," is used," ? "is not displayed.
Now, press�.

[4] 40 A=A + 1

Variable A is a counter that keeps track of how many times execution
is performed for each entered value. Variable A is initialized to 0 in line
20. The first execution of line 40 performs A=A+1 (A=0+1), so the value
of A is set to 1 .
When line 40 is executed at this time (A=1), A=A+1 (A=1 +1) is perform­
ed and A takes on a value of 2. The value of A will increase by 1 each
time line 40 is executed. No matter what the value of A at the end of the
program, however, it is always set to 0 (in line 20) when the program is
executed from the beginning.

Line 40 1st time A= 0 + 1
execution: 2nd time A = 1 + 1

3rd time A = 2 + 1

Press the �key.

46

(A = 1)

(A = 2)

(A= 3)

3-7 BASIC PROGRAMMING {2]

[5] 50 B = N * A

This is an assignment statement {the same as line 40) which assigns the
value of N * A to numerical variable B. When this line is first executed,
1 has been assigned to A by the execution of line 40. An optional
numerical value has been assigned to N by the execution of INPUT in
line 30.
Therefore, if N is 17,

17 is assigned to B.

In the following execution of line 50, a value of 2 is
assigned to A the second time,

2nd time B = 17 * 2
3rd time B = 17 * 3 }

The multiple of N is continuously
assigned to the numerical variable B,
cancelling any previous value of B.

Now let's look at the next line. Press �

[6] 60 IF 8>200 THEN

Conditional expression

100

Line number to which
a jump is made.

Decision statement

This is a conditional statement that says "If {IF) the value of B is larger
than 200 {B>200), jump to line 100." In other words, if thevalue of B
is equal to 200 or less, execution proceeds to the next line without a
jump. When line 50 is repeatedly executed, the value of B becomes 204
after 12 times {17x12), B>200 is realized and a jump (branch) is made
to line 100.

IF expression THEN line number

lf this expression is realized, the

See page 186.

program jumps to a specified line number.

Now press�.

47

CHAPTER 3 "BASIC" REFERENCE

(7) 70 PRINT B See page 198.

Numerical variable

Screen display command

PRINT is a display command. In this program, this command displays
the contents of numerical variable B on the screen. The semicolon after
B is used to keep everything displayed continuously. Because of this, the
display called for in line 80 will occur directly after B without line
change.

(8) 80 INPUT '' OK" ; C$ See page 189.

Character variable

Input command Message

The INPUT statement you learned in the section of line 30 is used again
in this line to perform character key input. When line 80 is executed,
"OK?" is displayed as a message statement by which key input of up to
7 characters can be assigned to character variable C$. If numerical vari­
able C is used here, a numerical value is only accepted as key input, and a
character or� eritry results in an SN error.
The function of this line is to temporarily stop the display of the com­
putation result of line 70 using the INPUT statement which waits for
key input. If this line is not provided, many results are repeatedly dis­
played at one time.
Press the � key.

(9) 90 GOTO 40 See page 184.

Jump command Line number to which a jump is made

This is a command for an unconditional jump to line 40. Press the�
key.

[1 OJ 100 END See page 170.

END is a command that terminates the program. END is an essential
command for a program because if a subroutine follows, the subroutine
is also executed. (See page 180 for subroutines.)
END can be inserted in line 60 as follows. If this is done, line 100 is
not required.

60 IF 8>200 THEN END

48

;

3-7 BASIC PROGRAMMING {2}

Let's observe the program flow as shown in the flow chart below.

REM (Remark) statement

A= 0 (Initialization)

INPUT statement

A= A+ 1

B= N*A

Program termination
condition

Displays the contents of B

Stops the disolav with an
INPUT statement
Returns to following com­
putation

Line 90 causes an unconditional jump (jump is always performed) back
to line 40, so the program is continuously executed between these two
lines. This execution is exited to line 100 by the conditional statement in
line 60 when the product of the multiple times the input value exceeds
200.

49

CHAPTER 3 "BASIC" REFERENCE

EXERCISE

■ Prepare a program to compute the accumulated sum of a series of
input numerical values.

Ell

(1) Clear all variables to make them 0.
(2) Request input of a numerical value.
(3) Add the numerical value to the sum of the previous numerical values.
(4) Display the result.

10 CLEAR

20 INPUT "DATA=";A

30 B=B+A

40 PRINT "TOTAL="; 8

50 GOTO 20

CLEAR in line 10 is a command that clears all numerical and character
variables. In this case, only variable B would be cleared by 8==0. If the
GOTO command in line50causes ajump to line 10, the variable becomes
0 and accumulation cannot be performed.

50

3-8 PROGRAM EXECUTION

Now the program that was input has been checked.
Let's execute this program.
Press the � key and the @I key first. Then enter the program execution
command (]]@) []) � . If a program is written in the P0 area, � (jJ
functions the same as RUN � .
If program input has been correctly performed, the following will be
displayed.

RUN

NUMBER?_

The input of a value is requested. Perform the following key operation.
17 �

Then the following will be displayed.

RUN

NUMBER? 17

17 OK?_

The display shows that the minimum multiple of 17 is 17 and confirma­
tion is requested. Press the � key to display the next multiple.

RUN

NUMBER? 17

17 OK?

340KL

Press the � key for the next multiple. After this, multiples up to 187
will be displayed by repeating this operation. If you press the � key
again and the next multiple does not appear, the conditional expression
in line 60 has been fulfilled. Since the multiple exceeds 200, program
execution terminates. To execute the program again, press (]]@) []) �
again.

51

CHAPTER 3 "BASIC" REFERENCE

Further program modification will help
to learn more about the use of various
commands.
First, multiples up to 300 can be obtain­
ed by changing B>200 in line 60 to B>
3�0. Line 60 can be displayed by��
60 �. Move the cursor to the position
and change 200 to 300. Next, press the
� key and � key. Then enter @ @l ffi)

�-
Let's check how the display is changed
by changing the PRINT statement in
line 70.
Line 70 reads "PRINT B;". The semi­
colon after B functions to continue the
display as you already know. Now, let's
delete the semicolon.

EDIT

m

Program Execution Sequence

NUMBER? 17

17 OK?

34 OK?

51 OK?

68 OK?

85 OK?

102 OK?

119 OK?

136 OK?

153 OK?

170 OK?

187 OK?

Ready P0

Move the cursor to the position at " ; " and press the @) key. Note that
";"disappears. Press the� and � keys and run the program.
The message statement "OK?" will now be displayed under the multiple.
In other words, since " ; " is gone, the next character is not displayed in
the same line, it is displayed in the next line.

52

3-9 DISPLAY SCREEN CONFIGURATION

Now, let's learn some techniques of screen display control by chang­
ing line 70 of the program that was prepared in the previous section.

!!) � 70 @@

The following display should appear.

70 PRINT B See page 198.

Let's display variable B together with variable A which is used as the pro­
gram repeat counter.
[1] 70 PR I NT A ; B ; = IIS JH.

�©ID� Move t h e cursor to t h e . pos1t1on . o f vana . bl e B an d enter
Now a 2 character space is provided before B. Enter0�ci:J@l � cb
Don't forget to finally press�- Press � , and then execute the pro­
gram to check the display. Next, make the following modification.

[2] 70 PRINT A, B ;

To make the modification, press the � key, display line 70 in the edit
mode and use the cursor keys as outlined above. Finally, press the �
key and then run the program again.
The line change is performed by "A, B;-'.
Let's make another modification. Press � .

[3] 70 PRINT A; TAB (8); B;

After the modification, execute the program.
The TAB (8) function moves the cursor to the position which is speci­
fied by the number inside (). Confirm there is a space between the
display of variables A and B. Notice that when 3 numerals are displayed
for variable B, the left side is aligned and the last character is shifted as
shown below.

3
4
5
6

51 OK?

68 OK?

85 OK?

102 OK?

53

CHAPTER 3 "BASIC" REFERENCE

Since this is a display of a multiple, there is no problem here. However,
when a quantity or price is displayed, the right side should be aligned. To
produce this display, the program should be rewritten using the USING
function.

[4] 70 PRINT A; TAB (8); USING"###"; B;

See page 263 for details on USING. Now, execute the program to check
the display.
The LOCATE command also controls the screen display. Let's rewrite
line 7fJ using this command.

[5] 70 CLS: LOCATE 5,2: PRINT A; B; ...

Command Command Command

A line in which two or
more commands are
connected by " : " is
called a multistatement.

Don't forget to press � after any modification. The display as shown
below.

1 17 OK?

The display appears at the center of the screen.
The LOCATE command is used as follows.

LOCATE X, Y

X indicates the column and Y the line where a character is to be
displayed.
See page 196 for details.

54

3-10 REPEAT PROGRAM EXECUTION

A "routine" is a task within a program that needs to be repeated a speci­
fied number of times. For example, we may wish to check a large volume
of data to find a specific character or value. Or maybe we need to
arrange data in some kind of order. Whatever out requirements, we can
have the computer go through all of the present data to compare it
against another value, to compare it with neighboring data, or to rear­
range everything. The commands included in this section are essential
for such applications.
Let's start with a simple program. Check which program area is empty
before inputting the program.

s�t �

The following display appears after this entry is made.

See page 151.

The numbers of program areas that have already been used to store pro­
grams or data are replaced with • 's. The example display above shows
that program areas 0 and 1 contain programs. The 8KB indicates the
total RAM capacity. The 4720B indicates that there are 4720 bytes of
remaining RAM capacity available for use. Of course, this number would
be higher if RAM expansion packs were being used.
A number from 0 through 2 appears after ANGLE to indicate the angle
unit (see page 154). This value does not influence ordinary computations,
and is always 0 (DEGREE) when the power of the unit is switched ON.
Ready P0 indicates the presently designated program area. In this case, a
program can be written in program area 0. Since program areas 0 and 1
are already occupied in this example, we would enter PROG, followed
by a value from 2 through 9 and then � .
Now, input the following program.

10 CLS
20 FOR A = 1 TO 20
30 PRINT CHA$ (254);
40 NEXT A

55

P •• 23456789 ANGLE 0
8KB 4720B

Ready P 0
_

CHAPTER 3 "BASIC" REFERENCE

Enter the following to display the first line of the program and confirm
correct input.

� �--------- Specifies the EDIT mode

Advance to the next line by line by pressing�-
After "Ready P0" appears on the display, run the program.
This program displays 20 times continuously.
Now, let's learn the new commands included in this program.

[1] 10 CLS

CLS is a command that clears the screen and moves the cursor to the
upper left corner. It is used to prepare the screen for the next display.

[2] 20 FOR A = 1 TO 2(l)

30 PRINT CHA$ (254) ;

40 NEXT A

Line 20 and line 40 are actually a single command.

FOR A = 1 TO 20

NEXT A

Sequentially assigns a numerical
value from 1 to 20 to variable A.
If A < 20, 1 is added to the value
of A and a return is made to FOR.

This is called a FOR-NEXT loop. Let's follow the execution procedure.
(1) 1 is assigned to A.
(2) Execute line 30.
3) NEXT A in line 40 checks if A<2@.
4) Since A=l, execution returns to line 20 and 2 is assigned to A.
5) Execute line 30.
6) Check if A<20 in line 40.

(7) Since A=2, execution returns to line 20 and 3 is assigned to A.
(8) When the value of A finally reaches 21, the line following the NEXT

statement is executed. In this example program there is no line after
NEXT, so program execution terminates and "Ready P0" is displayed.

Now let's look at line 30 which is repeated 20 times in this program.

56

3-10 REPEAT PROGRAM EXECUTION

[3] 3Ql PRINT CHR$(254); See page 245.

Display CHR$ (254) same line

All characters and keys are assigned code numbers ranging from 0 through
255, and CHR$ (254) is the function that specifies character code num-
ber 254 () . (See table on page 327 .)
Since cannot be entered directly by pressing a key,. it is specified by
the function CHR$ (254). This function is essential for specifying such
symbols and graphics. "CHR$ (" is entered using

EXERCISE

■ Prepare a program in which the integers from 1 to a specified number are
continuous displayed using FOR-NEXT.

FOR A= 1 TO N

NEXT A

10 CLS

20 INPUT "NUMBER"; N

30 FOR A=1 TO N

40 PRINT A;

5(2) NEXT A

6(2) END

57

CHAPTER 3 "BASIC" REFERENCE

To provide for the input of an optional numeral in line 20, "NUMBER?"
is displayed as a message statement. The entered value is assigned to
variable N and the number of repeats is specified in line 30. For example,
if the value 15 is entered, line 40 is executed 15 times.
The variable used by FOR-NEXT is displayed in line 40. This program
shows that 1 is added to the variable of the FOR-NEXT command each
time the loop is repeated.

58

3-11 SUM TOTAL PROGRAM

The FOR-NEXT loop introduced in the previous section requires some
time getting used to, so let's try another program.
This time, let's use program area P4. Use the procedure already outlined
to designate the program area. Enter NEW, then�' and we're ready to
go.
This program computes the cumulative cost of a series of articles with
different unit prices. Subtotals for each article are also provided. The
total number of different articles is input at the very beginning of the
program.

10 CLEAR

20 INPUT "NUMBER OF ARTICLES";N

30 FOR A=l TO N

40 INPUT "UNIT PR ICE"; B

50 INPUT "QUANTITY''; C

60 PRINT ,, SUBTOTAL II; B*C

70 D=D+B*C

80 NEXT A

90 PRINT "TOTAL";TAB(10); "$";D

100 END

The processing in each line of this program is as follows.

10 Clears all variables (assigns 0 to all variables).
20 Requests input of the number of articles (Assigns the number of

30

80

articles to N).

Unit price and quantity are requested for the number of times
specified by N. After each input, the subtotal is displayed and is
added to the total.

90 Displays the total amount.
100 Termination

59

CHAPTER 3 "BASIC" REFERENCE

Let's analyze the FOR-NEXT loop from line 30 to line 80 in detail.
The task to be performed in the loop from FOR to NEXT is as follows.

(1) The unit price is input and assigned to variable B.
(2) The quantity is input and assigned to variable C.
(3) The unit price is multiplied by the quantity and the subtotal is

displayed.
(4) The subtotal is added to the cumulative total.

In line 90 of this program, an easy-to-read display can be obtained.

90 PRINT "TOTAL"; TAB (10); "$" ; D

Displays total. Takes 10 Displays $. Displays total
spaces. amount.

Let's rearrange the program based on a subroutine concept. The funda­
mentals of the subroutine are shown below.
The command used for this procedure is GOSUB-RETURN.
Line 40 to 70 in the previous program are changed to lines 500 to 540,
and GOSUB 500 is inserted in line 40.

Main routine Subroutine

10

20

30 GOSUB 500

Go to the subroutine at line 500.
40 GO SUB

50

RETURN
60

7fJ

Return to the command following GOSUB. 80

90

100

Lines 30 to 80 are modified according to the above as follows.

30 FOR A = 1 TO N

4e> GOSUB 500

50 NEXT A

60

500

510

520

530

540

RETURN

And now our program looks like this:

3-11 SUM TOTAL PROGRAM

10 CLEAR

20 INPUT "NUMBER OF ARTICLES";N

30 FOR A=l TO N

40 GOSUB 500 FOR-NEXT loop. Repeats N times.

50 NEXT A

60 PRINT "TOTAL";TABC10); ,;$";D

70 END

Subroutine

500 PRINT A;TABC5);"UNIT PRICE";:INPUT

B

510 PRINT A; TABC5); "QUANTITY";: INPUT C

520 PRINT "SUBTOTAL";B*C:BEEP 1

530 D=D+B*C

540 RETURN

Input this program in a new program area. Confirm the difference in
execution between this and the previous program.

61

3-12 CHARACTER VARIABLES

Before getting into the actual storage of large volumes of data, let's first
have a look at how character data is handled. As has already been men­
tioned, variables are roushly divided into two categories: numerical vari­
ables (such as A, B,C,A 1) to which only numerical values can be assigned,
and character variables (such as A$, B$, A 1 $) to which characters and
symbols can be assigned.
Since numbers as well as symbols and alphabetical characters can be
assigned to character variables, the difference between the two types of
variables may not be clear. It should always be remembered, however,
that a numerical variable expresses a quantity, whereas a numerical value
in a character variable expresses the character only.

For example:

(Numerical value)

4 + 3 - 7

(Character)

"4" + "3" - 43

As can be seen on the right, the assigned characters are enclosed in quo­
tation marks the same as messages with the INPUT and PRINT com­
mands. The result of adding two characters is a string that contains the
two characters. A numeral treated as a character can be converted to a
numerical value using the VAL function (see page 247).
In the following section we will be discussing the use of character vari­
ables in arrays. Each element of a character array usually holds up to 16
characters, but can be specified to hold up to 79 characters.

62

Character arrays are specified as follows.

3-12 CHARACTER VARIABLES

DIM F$ (50) * 30

Character variable Maximum number of characters per variable

Number of data

Memory area is conserved by speci­
fying the maximum number of
characters per variable. When 30 is
specified as above, the required
memory is computed as follows.

50 X (30+ 1) = 1550 (Bytes)

Number of characters+ 1

The less the memory used per variable, the more overall memory space
available. With numerical variables, the selection is between single­
precision and half-precision variables. A half-precision numerical array
requires only half the memory as a single-precision array. This will be
explained in the following section.

63

3-13 WHAT IS A DIMENSION?

The word "dimension" can often be heard when talking about computer
programs. A dimension can be thought of as a kind of container or shelves
as shown in figure (2) below. Data (such as numerical values or charac­
ters) can be stored on these shelves for later retrieval.
In this example, 5 shelves are prepared under 1 variable name. If we store
"Smith" in A$(0), "Johnson" in A$(1) and "Foster" in A$(2), we can
then recall these data by specifying the variable name and control num­
ber. Different data can be included under A$. Without arrays, each piece
of data would require its own variable name as shown in figure (1) below.
This would make it difficult to keep track of data and would result in
inefficient programs.

(1) 1 data item per variable -
inefficient

64

(2) 1 variable name holds
numerous data items -
1-dimensional array

3-13 WHAT IS A DIMENSION?

■ 1-Dimensional Arrays
The method shown in figure (2) is known as a 1-dimensional array, and
is very handy for inputting large volumes of data. Although only 5
shelves were used for the example, up to 256 (� - 255) shelves can be
reserved per variable name.
Before an array is used, shelf space must be reserved. Attempting to
place data on a shelf (in memory) without this preparation will result in
an error (UV error).

(3) Directory using 1-dimensional arrays

(4) 2-dimensional array

65

CHAPTER 3 "BASIC" REFERENCE

■ 2-Dimensional Arrays
Based on what we already know about 1-dimensional arrays, we could
construct a directory using a series of variables. In figure (3), we see that
names are assigned to A$, addresses to B$ and telephone numbers to
C$. To find out a person's telephone number, for example, we would
input the name and then use the resulting A$ shelf number to find the
right shelves in B$ and C$. A specific shelf can be specified by indicating
the horizontal variable name and the vertical control number.
Another means to accomplish the same result would be to use what is
known as a 2-dimensional array as shown in figure (4). This type of
arrangement allows the vertical and horizontal arrangement of data
under a single variable name. Up to 256 rows and columns (0 - 255) can
be specified, but, due to memory limitations, a 256 x 256 array is impos­
sible because the memory required for a 2-dimensional array is:

Number of vertical addresses x number of horizontal addresses
x number of required memories per address

A 256 x 256 array that allows 16 characters per variable would require:

256 x 256 x (16 + 1) = 1114112 bytes

Of course, in this case a memory overflow error would be generated.

66

3-14 NUMERICAL ARRAY VARIABLES

A numerical array is used when storing numerical values on the shelves
described in the preceding section. A variable name (in the case of arrays
called an "array variable") such as the A$, B$ and C$ of the previous
section is used. The array variables for numerical and string arrays are
basically the same for control purposes, but data handling and expression
within a program are different.
First let's prepare a program using a numerical array variable to set up a
1-dimensional array like we saw in the previous section. Since this set of
shelves will hold numerical values, the array variable must be an alpha­
betical character. Let's call this array "A", and create a total of 7 shelves
from t, through 6.

(1) Array variable A configuration and expression

67

DIM A(6) used to set up shelves

NOTE!

Seven data items are
numbered from 0
through 6.

CHAPTER 3 "BASIC" REFERENCE

The following is used to prepare shelves 0 through 6 under array variable
A.

Numerical array name

DIM A (6)

Dimension
command

1-dimensional array
with 7 shelves
(0 through 6)

Specifying the above sets up array A and initializes all arrays in A to 0
(empties all of the shelves). If a DD error is generated when a DIM com-
mand is entered, enter CLEAR and repeat.
Now let's store some data on the shelves.

A (5) = - 13

Address 5 in array A

A(3) = 65

Now let's confirm that the data are assigned to the specified shelves.

A (5)

A (3)

-13 displayed

65 displayed

The operation outlined above can be included in a program as follows.

5 CLS

10 CLEAR

20 DIM A(6)

30 INPUT "A(5) = "; A(5)

40 INPUT "A(3) = "; A(3)

50 PRINT A(5); A(3)

60 END

68

3-14 NUMERICAL ARRAY VARIABLES

■ Numerical values assigned to array variables
Certain restrictions exist concerning the numerical values that are assigned
to array variables. The first important thing to remember is that up to a
12-digit mantissa and 2-digit exponent can be assigned to each array vari­
able. Values are displayed, how-
ever, up to 10 digits (rounded). (2)Arraynumericalvalues
Internal computations are con-
ducted with 12 digits.
A numerical array as described
above is said to be "single­ 2 digits

precision". Often, however, 12
significant digits are not required
for computations and 10 digits are
not necessary for the display.

(12 digits)

Everything past the 12th digit discarded.
Therefore, "half-precision" pro­
cessing can be used in which values
are stored only up to 5 digits. As the names imply, the memory space
required for a half-precision data item is one half that necessary for
single-precision data. The difference between single-precision and half­
precision is shown in figure (3).

(Display)
Numerical values up to 100 digits long can be expressed by the
PB-770. Even larger digits can be displayed depending upon the
program. Once 10 digits are exceeded, however, values appear on
the display in exponential form.

12345678909 1.234567891 E 10

Mantissa Exponent

Rounded

Exponential form represents: a number x 10 18
. In the above

example, the display means: 1.234567891 x 10 10

69

(Address)

(3) Single and half-precision shelf size

Half-precision

4 bytes are used
per shelf.

(Address)
Numerical value of a
5-digit mantissa and
2-digit exponent can
be stored.

Single-precision

Single-precision dimension is expressed as follows.

A(i) Single- precision numerical array

8 bytes are
used per shelf.

Numerical value
of a 12-digit
mantissa and 2-
digit exponent
can be stored.

A half-precision dimension is expressed using an exclamation mark
after the variable.

A!(i) half-precision numerical array

70

CHAPTER 3 "BASIC" REFERENCE

3·14 NUMERICAL ARRAY VARIABLES

■ Single-precision and half-precision in a 2-dimensional array
The precisions of 2-dimensional arrays can be regarded the same as those
for 1-dimensional arrays. An example is shown below in figure (4).

DIM A! (i, j) Half-precision
DIM A (i , j) Single-precision

(4) Half and single-precision 2-dimensional arrays

DIM A! (i,j) DIM A (i ,j)

71

3-15 NUMERICAL ARRAY PROGRAMMING

Let's prepare a program for a totalization table. Column and row sub­
totals are to be computed, and a grand total is obtained at the end. The
table is 4 x 4, so 16 pieces of data are used.

0

2

3

Subtotal

A-1 A-2 A-3 A-4 Subtotal

Since numerical data are used, let's prepare a program with a 1-dimen­
sional numerical array. Let's select A as the variable name. Now, let's
prepare the program according to the following flow chart.

2

3

10

4
11

5
12

6

13

7

Data input of column A-1

Data input of column A-2

Data input of column A-3

Data input of column A-4

Totalization of row 0

Totalization of row 1

Totalization of row 2
14

15

Totalization of row 3

Totalization of column A-1

Totalization of column A-2

Totalization of column A-3

Totalization of column A-4

Row subtotal display

Column subtotal display

Grand total display

72

1

1

9

8

3-15 NUMERICAL ARRAY PROGRAMMING

Let's prepare a program to input each column of data as shown in 1 to 4
of the flow chart.

10 CLEAR
20 DIM Al(15)
30 FOR I = 0 TO 3
40 INPUT A I (I)

50 NEXT I

FOR-NEXT loop

In this program data is entered from A!(0) through A!(3) (column A-1),
but how do you enter data to columns A-2 through A-4 without changing
the variable name? The following shows what we are trying to accomplish.

J Subtotal

A!(4) A!(8) A!(12) 8!(0)

A!(5) A!(9) A!(13) 8!(1)

A!(6) A!(10) A!(14) 8!(2)

A!(7) A!(11) A!(15) 8!(3)

A!(0)

A!(1)

A!(2)

A!(3)

Subtotal C!(0) C! (1) C!(2) C!(3) D

If we look at the relationship from column to column, we can find the
following pattern.

A!(x) A!(x+4) A!(x+8) A!(x+12)

Now all we need is a routine that will add 4 to the loop counter each time
we want to move to the next row. This can be accomplished using the
nested loop shown in lines 40 through 90 below.

10 REM INPUT

20 CLEAR

30 DIM A ! (15)

40 FOR J= 0 TO 3

50 FOR I =0 TO 3

60 PRINT "A-";J+1; 11 (11 ;I;")";

70 INPUT Al(J*4+1)

80 NEXT I

90 NEXT J
73

Data input by
Column shifting se-
data input quentially from

column A-1.

I

CHAPTER 3 "BASIC" REFERENCE

Let's see how this works. The first value of J and I is 0. J will retain the
value of 0 for the next three passes of I. Line 60 results in a display of
"A-1 (0)" because both J and I equal 0. Line 70 waits for an input for
A! (0) since 0*4 + 0 = 0.
On the second pass of I, J still equals 0 but I now equals 1. Therefore, line
60 displays "A-1 (1)" and line 70 waits for an input for A!(1) since
0*4+1 = 1.
Let's take a look farther down at A!(14). In this case, J =3 and 1 =2. Line
60 displays "A-4 (2)" and line 70 waits for an input for A!(14} because
3 * 4 + 2 = 14.

This completes the data input program. Data is sequentially entered with
the display of "A-Column No. (Vertical No.}?" Data is stored in
array variable A! (} in line 7<J.
Now, let's prepare a program for the row subtotal.

95 DIM 8!(3)

100 FOR I =0 TO 3

110 FOR J=0 TO3

120 B ! (I) = BI (I) +A ! (J * 4+ I)

130 NEXT J

140 PRINT "B-"; I;TAB (5);B!(I)

150 INPUT "OK"; F$

160 NEXT I

Computes and dis­
Row plays subtotal by
computation shifting vertically
and display. 4 times.

Data is stored to array variables 8!(0)-8!(3} in line 120, and is dis­
played in line 140. To prevent display of the subtotal of 8!(0}-8!(3}
from scrolling, the display stops in line 150, and the next display is
made by entering�.
Now, prepare a program for the column subtotal.

170 DIM C!(3)

180 FOR J =0 TO 3

190 FOR I =0 TO 3

200 C!(J)=C!(J)+A!(J*4 + I) Column
computation

210 NEXT I and display

220 PRINT "C-"; J ; TAB(5); C!(J)

230 INPUT "OK"; F$

240 NEXT J

74

Computes and dis­
plays subtotal by
shifting hori­
zontally four
times

3-15 NUMERICAL ARRAY PROGRAMMING

This is almost the same as the row subtotal method using nested FOR­
N EXT loop with a different sequence of variables (loop control vari­
ables) I and J.
Now, let's compute the total.

250 REM TOTAL

260 FOR I =0 TO 3

270 D = D+c, (1)

280 NEXT I

290 PRINT "TOTAL="; D

300 END

Programming With A 2-Dimensional Array

The handling of each shelf where data is to be stored is complicated and
difficult to understand when a 1-dimensional array is used as previously
explained. Let's prepare a program using a 2-dimensional array which is
much more convenient for handling column and row data.

[I] Initialization

10 ERASE A!

20 CLS

30 N=4

40 DIM A! CN,N)

Clears the array of variable A.

Clears the screen.

The number of column or row items.

Dimension declaration (The declaration of half­
precision numerical array).

The number of column and row items can be changed by changing the
value of N in line 30.

75

CHAPTER 3 "BASIC" REFERENCE

[21 Data Input
J Row total

28 39 12 54 133

I
53 29 55 30 167

28 17 80 53 178

50 FOR 1=0 TO N-1

60 FOR J=0 TO N-1

70 PRINT I;"-- n ;J;

80 INPUT A!CI,J)

90 NEXT J

100 NEXT I
60 31 70 44 205

Column 169 116 217 181 683

total

N-1 is used in lines 50 and 60 because row and column totals are not
required for data input. Note that data are entered in rows and not verti­
cally as with the 1-dimensional array.

� Row Subtotal

110 FOR 1=0 TO N-1

120 FOR J=0 TO N-1

130 A! C I , N) =A! C I , N) +A! C 1 , J)

140 NEXT J

150 NEXT I

Subtotal of
this row

Row subtotals are computed four times (when N=4). Manually go
through this routine to confirm that all values of A! () are accounted
for.

@] Column Subtotal

160 FOR J=0 TON

170 FOR 1=0 TO N-1

180 A! < N, J) =A! C N, J) +A! <I, J)

190 NEXT I

200 NEXT J

Subtotal of

this column

Column subtotals are computed four times (when N=4). Again, manually
go through this routine to confirm that all values of A!() are ac­
counted for.

76

J

I

I

J

� Row Subtotal Display

210 FOR 1=0 TO N-1

220 PRINT A!Cl,N);

230 NEXT I

240 STOP

3-15 NUMERICAL ARRAY PROGRAMMING

J

Display of
this row

The program stops once and confirms each row subtotal. Then, execu­
tion proceeds to the next line after� � � is entered.

[§] Column Subtotal Display

250 FOR J=0 TON

260 PRINT A'.CN, J);

270 NEXT J

280 END

J

Display of
this column

This routine displays the sum of all of the column subtotals. Since the
subtotal of the column at the far right is actually the total of the row
subtotals, the result is a display of the sum of the entire table.

The most difficult point of this program was the double FOR-NEXT
loops (commonly called "nesting"). But after using this technique a few
times, its value will soon become evident. Just remember that the FOR­
NEXT loop automatically increments the value of control variable with
each execution.

77

I

I

CHAPTER 3 "BASIC" REFERENCE

[1] Program Execution

When you run the ,.erogram, "0-0? " is displayed which requests data
entry. Enter Data�, then data entry for the next row is requested by
"0-1?".
When all data input has been performed the row subtotals and "STOP
P0-240" are displayed and the program stops. co•r
Next, the column subtotals and total are displayed by entering @ill! CID
� and the program is terminated. Try several different display formats.

■ Control variables

In the routine for the row subtotals, the values of control variables
change as follows.

Control variables
110 FOR [I]=0 TO N-1

1 20 FOR Q] = 0 TO N -1

130 Al ([I].N)=Al([I].N)+Al([G!j)

I and J are control variables
of the FOR-NEXT loops.
They change from 0 to 3.

When I = 0, J = 0 and N = 4,
A! (0, 4) = A! (0, 4) + A! (0, 0).

78

3-16 CHARACTER ARRAY VARIABLES

Characters can also be assigned to 1-dimensional and 2-dimensional
arrays. With numerical array variables, single and half-precision can be
specified for efficient use of memory, as described before. Character
array variables can also be used with the string length specified.
Storing a string that is shorter than 6 characters in an array specified for
more wastes memory. Attempting to store a string that is longer than the
specified array capacity will generate an error. Therefore, it is important
to determine the string length of the array being defined.
The number of characters per character array variable is specified as
follows.

DIM A$(i) * n (1 �n<79)

* If * n is omitted, the number of characters
is specified to 16 characters.

16 character spaces

Up to 16 characters

Character indication

DIM A$ (3)

8 character spaces

0 A BC D EFGH

I J K L

2 MNOPQR

DIM 8$(2) * 8

Character array variable 4 shelves (arrays)
from 0to 3.

Number of characters specification
(from 1 to 79 characters)

* Since * n is omitted, the number of characters is specified as 16 characters.

79

0

2

3

1

1

CHAPTER 3 "BASIC" REFERENCE

Let's enter characters in an array variable. Perform the following opera­
tions.

CLEAR �
DIM H$ (30)* 5 �
H$ (1) = "ABCD" �

H$ (2) = "EF" �

When you execute these entries, the characters
are stored in the array variable as shown in the
figure on the right.
To recall these, perform the following operations.

H$ (1)

H$ (2)

■ DIM statement error

ABCD

EF

Attempting to enter a string that is longer than the size specified by a DIM
statement results in an error.

ST error

At this time, reenter the string keeping it within the defined range.
Attempting to define an array that has the same name as a presently defined
array will also result in an error (DD error). For example, this error would be
generated if the statement

DIM A$(20) were input followed by

DIM A$(30)

When this happens, erase A$() using the ERASE command.

ERASE A$ �

It should be noted, however, that the ERASE and CLEAR commands erase
data.

80

3-16 CHARACTER ARRAY VARIABLES

■ String Array Programming

Exercise

Prepare an array program with 3 arrays in which up to 1 Q) characters can
be stored respectively. Characters are to be entered by character codes.
To stop input in the middle, 0 is to be entered. When the entry for 3
arrays has been completed, all characters are displayed.

-
Since initialization is with up to 10 characters and 3 arrays,

10 CLEAR
20 DIM N$(2)*10

The data input routine comes next. Since there are three arrays, prepare
three FOR-NEXT loops and use another loop specified by a GOTO
statement to read 10 characters. Include an INPUT statement in the loop
to read character codes.
The basic configuration of the data input program is as follows.

(1) Set the counter to 0 for the number of
characters per variable B = 0

(2) Input a character code _ INPUT N
(3) Add 1 to the counter for the number of

characters . , B = B + 1
(4) If the counter exceeds 10, input character

codes to next array_ IF B = 10 THEN~
(5) Convert a code number to a character and

store it to an array variable N$(I) = N$(I) + CH R$(N)
(6) Return to (2) . GOTO ~

The routine for displaying the result comes next. Provide a display of
N$(0)-N$(2) on the same line.

1 00 FOR I = 0 TO 2

110 PRINT N$(I);"

120 NEXT I

81

" ; 0 to 2 is sequentially entered
to I.

CHAPTER 3 "BASIC" REFERENCE

No. 11 ;N

10 CLEAR :CLS

20 DIM N$C2)*10

30 FOR 1=0 TO 2:8=0

40 PRINT "N$C";I;")";:INPUT II

45 IF N>255 THEN 40

50 IF N=0 THEN 90

60 B=B+l:IF 8=10 THEN BEEP :GOTO 90

70 N$Cl)=N$(l)+CHR$CN) ·

80 GOTO 40

90 NEXT I

100 FOR I=0 TO 2

110 PR I NT N$ C I) ;
11

" ;

120 NEXT I

130 END

When you execute this program, "N$(.__,0).__,.__,No.? _" is displayed.
Now enter the character code. The numeral enclosed by parentheses of
"N$(1)" is changed from 0 to 1 to 2 by entering 0�.
Now, enter the following codes and see what appears.

67 �65 �83 �73 �79 �0 �67�

79 �77 �80 �85 �84 �69�

82 �0 �80 �66 �55 �48� 48 � 0 �

82

3-17 COMBINATION OF STRING
ARRAYS AND NUMERICAL ARRAYS

In most cases when data is processed by preparing a table, a combination
of string and numerical arrays is used. In this case, characters and numer­
ical values must be handled at the same time as one data group.
For example, in regard to a name and score, or the names of articles,
number of articles and an amount, characters and numerical values must
be recalled at the same time.
Let's prepare a result processing program as an example. First, a 1-dimen­
sional character array to store names is required. Then a 2-dimensional
numerical array is required in which the total score for three subjects
(English, mathematics, and science) corresponding to the name is stored.
The following model can be assumed based on the items mentioned
above.

45 people

D$ (45) Average score

The data to be entered is as follows.

50

83

60

60

71

63

83

D! (45,3)

0 = English
1 = Mathematics
2 = Science
3 = Total of 3 subjects

75

70

40

CHAPTER 3 "BASIC" REFERENCE

[TI Name Input

10 ERASE D$,D!: CLS

20 DIM D$C45)*10,D!C45,3)

30 1=0

40 INPUT ''NAME ''; DSC 1)

50 IF D$Cl)="END" THEN 80

60 l=I+t:IF 1=45 THEN 80

70 GOTO 40

Names are stored in D$(0) to D$(44) and the average score is stored in
D$(45). The execution is exited from the loop by inputting "END". Of
course, lines 40 to 7'1J provide the loop for name input.

[2] Numerical Value Input

The following is a routine that enters numerical value into a 2-dimen­
sional array. Line 90 displays a student's name in D$(Y), and line 120
inputs the English score in D!(0,0) (when X=0). Then line 130 adds the
score to D!(0,3). D!(Y,3) is the subtotal of the row since only three
subjects are being handled here. The number of elements can be ex­
panded by changing the 3 of D!(Y,3) to "1 + the number of elements".
X,Y of D!(Y ,X) are determined by the frequency of the FOR-NEXT
loop.

FOR Y=0 TO I -1

FOR X = 0 TO 2

INPUT D ! (Y, X)

NEXT X

NEXT Y

84

3-17 COMBINATION OF STRING ARRAYS

AND NUMERICAL ARRAYS

The basic input format is shown below.

80 FOR Y=0 TO 1-1

90 PRINT D$(Y)

100 FOR X=0 TO 2

110 PRINT X

1 20 INPUT " " ; D ! < Y , X)

130 D!<Y,3)=D!<Y,3)+D!<Y,X)

140 NEXT X

150 NEXT Y

y

X

English

(0)

Mathe­
matics

(1)

Science

(2)

Score table

Total

� Average Score For Each Subject
No matter how many names are input (counted by I), D!(45,X) is speci­
fied to store the average score for each subject. In line 180 the cumula­
tive points for each subject are assigned to D!(45,X). In line 200 the
average is assigned to D, and in line 210 the decimal part of D is rounded
off to one place and then reassigned to D!(45,X). INT is the integer func­
tion in which values below the decimal point are discarded.
This function is used because of characteristics of test result processing.
If used for other purposes, line 210 can be changed.

160 FOR X=0 TO 3

170 FOR Y=0 TO 1-1

180 D!(45,X)=D!(45,X)+D!<Y,X)

190 NEXT Y

200 D=D ! <45, X)/l

210 D! (45,X)=INT<D*10+0.5)/10

220 NEXT X

85

CHAPTER 3 "BASIC" REFERENCE

@] Total Score Display For Each Name

The total score for each name is displayed. After you press �in line
260, the program proceeds to the next name. The total score for a name
is processed by loop control variable Y. Therefore, the total always
corresponds to the proper name.

Name D$(Y)
Total score D! (Y,31

230 FOR Y=0 TO I-1

240 PRINT D$(Y);" T=";

250 PRINT D ! (Y,3)

260 K$=1NKEY$:IF K$="" THEN 260

270 NEXT Y

� Average Score Display
The display of the average score for each subject is performed by sequen­
tially displaying data D!(45,X) from X=0 to X=3.

280 FOR X=0 TO 3

290 PRINT "AUE.=";

300 PRINT D!(45,X)

310 K$=INKEY$:IF K$=''" THEN 310

320 NEXT X

330 END

Execute this program and enter data.

The display screen of execution result is as follows.

S.O T=

� AVE. =

� AVE. =

� AVE. =

� AVE. =

A.YT= 185

K.K T= 224 Total score for a name is displayed sequentially each
time the � key is pressed.

163

64.3 -Average score of English(0)

64. 7 -Average score of Mathematics(1)

61. 7 -Average score of Science (2)

1 9(2). 7- Cumulative average of each person's total score

86

3-18 STATISTICAL FUNCTIONS

Statistical computation capabilities are essential to business and engineer­
ing for analyzing data and making projections. The PB-770 features all of
the essential statistical functions listed below, so troublesome computa­
tions are simplified while correlation coefficients and estimated values,
etc. can be quickly determined.
* STAT LIST� displays the names and values of the basic statistics

(indicated by* below). To suspend display press�- Pressing�again
will resume the display. Entering STAT LLIST �will output the basic
statistics to the printer.

Number of data items processed

Sum of x data

Sum of y data

Sum of products of x data and y data

Sum of squares of x data

Sum of squares of y data

Mean of x data

Mean of y data

Sample standard deviation of x data

Sample standard deviation of y data

Population standard deviation

of x data
Population standard deviation
of y data

Li near regression
constant term

Linear regression
coefficient

Correlation coefficient

Estimated value (value of x
estimated from y)

Estimated value (value of y
estimated from x)

87

CHAPTER 3 "BASIC" REFERENCE

ST AT CLEAR§[] should be entered to clear the statistical memory area
before new data is entered.

■ Statistical Data Input

• Single variable
Individual data input ST AT data �
Multiple input of same data STAT data@ill] ci frequency�

L__J

• Paired variable
Individual data input STAT x data O y data�
Multiple input of same data ST AT x data O y data @ill] ci

frequency§[]

Data is input using the� key, but such results as standard deviation are
obtained using the key. Incorrect operation will result in an SN error
being displayed.

The table represents the shipments of articles x and y over a period of 5
days. Calculate the standard deviation and determine the variance in the
shipments.

Operation:

STAT CLEAR�

STAT2G]1 � STAT2G]5 � STAT5G]5 �

STAT8G]5 � STATBG]9 �

ST AT LIST � (Basic statistics will be displayed automatically.)

CNT 5 · · · · · · · · · · ·· · ·· Number of data items

SUMX 2 5 ··· ······Sum of x data

SUMY 2 5 ··· ·· ···· Sum of y data

SUMXY 1 49 Sum of products

of

x data and y data
SU MX 2 1 61 · · · · · · Sum of squares of x data

SU MY 2 1 5 7 · · · · · · Sum of squares of y data

88

3-18 STATISTICAL FUNCTIONS

MEANX

MEANY

SDXN

SDYN

Ready P0

5

5

2.683281573

2.529822128

Mean of x data

Mean of y data

Population standard
deviation of x data
Population standard
deviation of y data

According to these statistical results, the standard deviation of article xis
larger than that of y though the sums and means are the same. Therefore,
it can be said that the variance in the shipment is greater for x.

Use the following data for regression computation and determine the
correlation coefficient and estimated value.

The following table shows last year's advertising expense ratio (adver­
tising expenses/operating expenses x 100) and operating profit ratio
(operating profits/sales x 100) for chain of 7 supermarkets.

Use the table to produce a scatter diagram.
Looking at the scatter diagram, it can be said that
profit was directly proportional to the amount
spent for advertising. A line connecting the
plots {dots) in the diagram is called a regression
curve, and, since it is almost a straight line in this
example, it is called linear regression. Regression
curves are logarithmic, exponential and power
curves, and the selection of the curve depends
upon the relationship between the x and y data.
It should be noted that the range of the correla­
tion coefficient (r) is -1 � r � 1. The correlation
is positive when 0 � r � 1, negative when
-1 � r< 0, and no correlation exists when r=0.

Now let's input the data for the 7 stores.

89

CHAPTER 3 "BASIC" REFERENCE

Operation: STAT CLEAR�
STAH:). 8G]2. 5 �STAT 2 .1 G:]3. 4�STAT 2. 5G]3. 7�
STAT1. 8G]3. 2�STAT3 .1 G:] 4. 3�STAT 4. 0G]6. 3�
STAT1 . 0G]2. 3�

LAA
1.142512973 Linearregression

m
Linear regression1 • 1 7 4221 646 ······ constant ter (A)

LAB
coefficient (8)

COR 0. 9628 25 2383 •····· Corre_la.tion
coeff1c1ent (r)

The correlation coefficient (r) indicates that x and y have a positive
correlation. Now let's calculate how much advertising expense ratio is
required for an operating profit ratio of 5.7% and how much operating
profit ratio can be expected from an advertising expense ratio of 4.5%.

EOX5 . 7
EOY4. 5

3.96124898 6
6.315 530022

These results tell us that an advertising expense ratio of 3.96% is required
for an operating profit ratio of 5.7%, while an advertising expense ratio
of 4.5% can be expected to produce an operating profit ratio of 6.32%.

90

• Logarithmic, Exponential and Power Regression
Let's apply the various types of regression to the data in the table below.

'79 5,810

'80 5,637

'81 6,736

'82 7,938

'83 8,169

3-18 STATISTICAL FUNCTIONS

• Logarithmic regression
The regression formula is
The logarithm of x is input for x data, and y data is input as it is.
1;1nx,1;(1nx) 2 and 1;1nxy are obtained for 1;x,1;x2 and 1;xy respectively.

Operation:

STAT CLEAR�
STAT LOG54Q5810�STAT LOG55[J5637�
STAT LOG56[J6736�STAT LOG57[J7938�

STAT L0G58[J81 69�

LRA

LRB

COR

COR 2

-1 51086. 8602 Regression constant term (A)

39240.6409 Regression coefficient (B)

0 . 9 4 61 8 6 7 9 8 9 Correlation coefficient (r)

0. 8952694585 Decision coefficient (r2)

• Exponential regression

The regression formula is
The logarithm of y is input for y data, and x data is input as it is.
lnA, :rlny and :rx-lny are obtained for A, SUMY and SUMY2 respective­
ly.

91

CHAPTER 3 "BASIC" REFERENCE

Operation: STAT CLEAR�

EXP LRA
LRB
COR

STAT
STAT
STAT

54[:JLOG581 0 � STAT 55[:JLOG5637�
56[:JLOG6736 � STAT 57[:JLOG7938�
58[:JLOG8169�

21 . 9 31 5 4 2 5 6 Regression constant term (A)

0 .1 023841 21 Regression coefficient (B)

0. 9442661 562 Correlation coefficient (r)

• Power regression
The regression formula is y = AxB (lny = lnA + B-lnx).
The logarithms of x and y are input for data x and y respectively.
lnA, �lnx, �(lnx) 2

, �lny, �(lny) 2 and �(lnx-lny) are obtained for A,
�x. �x2

, �Y, �y2 and �xy respectively.

Operation ST AT CLEAR�
STAT LOG54[:JLOG5810� STAT LOG55[:JLOG5637�
STAT LOG56[:JLOG6736 � STAT LOG57[:JLOG7938�
STAT LOG58[:JLOG8169 �

EXP LRA
LRB
COR

6. 6511 54824E - 07
5. 725355325
0.9433168782

92

3-19 USING GRAPHIC CHARACTERS

The characters shown on the Character Code Table on page 327 can be
used by the PB-770.

(1) CHR$ function
The word "NAME" can be displayed on the screen using the following
command.

PRINT "NAME"�

The CHR$ function can also be used to produce the same display.

PRINT CHR$(78); CHR$(65); CHR$(77); CHR$(69) �

As can be seen, specifying a character code for the respective letters
caused them to be displayed on the screen.
The other characters can be used in the same manner.
The following table illustrates some of the codes.

(2) Graphic symbols
The following program will produce a display of 5 playing cards.

10 CLS

20 FOR 1=0 TO 4

30 LOCATE Ix3, 1:PRINT 1+3

40 LOCATE Ix3+1,2:PRINT CHR$C232+I MO

D 4)
50 DRAWCix24+4,4)-Cl�24+20,4)-Cl�24+2

0,2b)-(I�24+4,2b)-<I�24+4,4)

b0 NEXT 1

70 1 F 1 NKEY.$= 11 " THEN 70

80 END

93

94

CHAPTER 3 "BASIC" REFERENCE

Execution Result

3�20 DISPLAYING PATTERNS

The PB-77O is capable of displaying patterns which cannot be found in
the Character Code Table. Let's try to display the pattern shown below.

Display format

AB$="FF18DB5A5ADB18FF" �
PRINT AB·�

After the above noted key operation, a pattern should appear on the
screen.

(1) Display process
Displays are produced by attaching a $ before a character variable (in
this case AB$}. This same process can also be used in a program.
The string that is assigned to AB$ is made up of hexadecimal values (the
hexadecimal number system uses numbers 0 through 9 plus alphabetical
characters from A through F). This same configuration can be used to
produce a variety of user generated graphics.

(2) Pattern configuration
Graphics are produced using the hexadecimal pattern shown below. The
pattern is an 8 x 8 grid, and each of the 64 positions of the grid represent
a dot on the screen.
As can also be noted, dots are arranged into 16 groups of 4 dots each.
These 16 groups are numbered according to the hexadecimal system
mentioned above.

95

PB-770 Only

CHAPTER 3 "BASIC" REFERENCE

(3) Dot designation
Dots are specified using the hexadecimal values. The following shows
the binary equivalents of the 16 hexadecimal values.

■ Hexadecimal Binary

The above table shows that the hexadecimal values can be expressed as
4-digit binary values. On the screen a binary "1" indicates that a dot is
displayed, while a "0" indicates that the dot is not displayed.
It is important to note, however, that the PB-770 counts dots from left
to right, from 0 through 3. It should also be noted that this counting
system is the opposite that of the binary number system.
The following table illustrates the 16 patterns possible with the 4-dot
groups. Specifying the proper hexadecimal value will produce the
corresponding pattern on the screen.

(4) Cautions
The following points should be noted when defining patterns.
1. Failing to include a "$" directly before the character variable will

cause the string in the variable to be produced on the screen.
2. Pattern display cannot be accomplished if the assigned string is longer

than 16 characters, if it is shorter than 16 characters, or when the
LPRINT command is used.

96

3-20 DISPLAYING PATTERNS

(5) Using character definition to display" Ol{3-y"
The following program is included to help you get some practice with
character definition.When executed, the program displays" Ol{3-y ".

(6) Pattern utility

10 A 1 $= '' 000442A21115EE;00"

20 A2$="C12222A12222E320"

30 A3$= '' 002241 C040E;0E;040 ''

40 PRINT $A1$;$A2$;$A3$;

It· is often difficult to convert a hand-drawn pattern to hexadecimal
format for input to the computer. The following program makes it possi­
ble to develop a pattern on the screen of the PB-770 itself and then auto­
matically convert it to hexadecimal.

First, input the utility program on pages 98 and 99 into the PB-770.
After confirming that input was performed correctly, enter RUN�-
An 8 x 8 grid will appear on the left side of the screen. The blinking dot
at the upper left position of the grid represents the pattern cursor. The
word "ON" or "OFF" on the right of the screen indicates the status of
the pattern cursor. ON indicates that a dot is present at the pattern
cursor position, while OFF indicates that a dot is not present. The 8
key is used to switch the status of the pattern cursor. Movement of the
pattern cursor is controlled by the following keys.

Movement of the cursor is confirmed by a beep each time one of the
movement keys is pressed. Try moving the pattern cursor around the grid
and turning some dots ON and OFF. Try making a pattern of your
choice.

97

CHAPTER 3 "BASIC" REFERENCE

Once a pattern is formed, press the � key. Shortly, the hexadecimal
value that represents the pattern formed above will be displayed. Write
down th is value and assign it to a registered character variable in the
PRINT$ statement to display the original pattern that you created above.

10 CL S

20 X=2:Y=2:F=0

30 FOR !=0 TO 32 STEP 4

40 DRAWCI,0)-CI,31)

50 IF 1=0 THEN 70

60 DRAWC0,I)-(31,I)

70 NEXT I

80 LOCATE 11,3:PRINT "OFF";

90 BEEP

100 K$=INKEY$:L=ASCCK$):N=UALCK$)

110 IF L=12 THEN 210

120 DRAWCX,Y)

130 DRAWCCX,Y)

140 IF F=l THEN DRAWCX,Y):DRAWCCX-2)/4

+100,<Y-2)/4):GOTO 160

150 DRAWCCCX-2)/4+100,(Y-2)/4)

160 IF K$="" THEN 100 ELSE BEEP

170 LOCATE 11,3

180 IF L=46 THEN IF F�0 THEN F=l=PRINT

"ON "; ELSE F=0:PRINT "OFF ";

190 IF N>0 THEN IF N<10 THEN IF N<>5 T

HEN GOSUB CN+4)�100

200 GOTO 100

210 AA$="":BEEP

220 FOR K=0 TO 7

230 Z=0

240 FOR 1=0 TO 3

250 IF POINT(I+100,K)()0 THEN Z=ZT2AI

260 NEXT I

270 AA$=AA$+RIGHT$CHEX$CZ),1)

98

3-20 DISPLAYING PATTERNS

280 Z=0
290 FOR 1=4 TO 7
300 IF POINT(I+100,K)<>0 THEN Z=Z+2�(1

-4)
310 NEXT I
320 AA$=AA$+RIGHT$CHEX$CZ),1)
330 NEXT K
340 CLS :BEEP :LOCATE 10,0:PRINT AA

$11 11 350 PR I NT ; AA$; 11 $ 11

II 3E.0 PRINT OK?<Push anY key)";
370 K$=INKEY$:IF K$="" THEN 370 ELSE 1

0
380 END
500 X=X-4:Y=Y+4:IF X<0 THEN X=30
510 IF Y)30 THEN Y=2
520 RETURN
600 Y=Y+4:IF Y>30 THEN Y=2
610 RETURN
700 X=X+4:Y=Y+4:IF X>30 THEN X=2
710 IF Y>30 THEN Y=2
720 RETURN
800 X=X-4:IF X<0 THEN X=30
810 RETURN

1000 X=X+4:IF X>30 THEN X=2
1010 RETURN
1100 X=X-4:Y=Y-4:If X<0 THEN X=30
1110 IF Y<0 THEN Y=30
1120 RETURN
1200 Y=Y-4:IF Y<0 THEN Y=30
1210 RETURN
1300 X=X+4:Y=Y-4:IF X>30 THEN X=2
1310 IF Y<0 THEN Y=30
1320 RETURN

99

3-21 PB-770 GRAPHIC FUNCTIONS

The PB-77O has a large liquid crystal display (LCD) which displays 20
characters x 4 lines, and also has 160 x 32 dots which allow graphic
displays.
PB-77O graphics can draw a precision graph and patterns using simple
commands.
Also, a 4 color 114 mm wide plotter-printer with cassette interface (FA-
1O or FA-11) can be connected to the PB-77O.
Since up to 80 characters can be printed on 114 mm wide paper, this
printer can be used in almost the same way as a full-scale plotter printer.
The compact PB-77O is provided with sophisticated graphic functions
that should be mastered to fully utilize its capabilities.
Although you may feel them troublesome at first, you will soon become
accustomed to the graphic functions with experience.

Plotter-printer with standard cassette tape recorder and cassette interface (FA-11)

100

3-22 GRAPHIC COMMANDS AND SCREEN
COORDINATES

Graphics are drawn on the screen by connecting a series of dots, so the
only thing required for graphics is providing dots at the proper locations.
The PB-77O has two commands which are used to draw and erase dots at
specified locations on the screen.

DRAW Draws dots and straight lines.

DRAWC ... Erases dots and straight lines.

Also, the following convenient function is provided for graphics.

PO I NT Shows whether a dot is drawn or not at a specified location.

It is necessary to understand dot locations (coordinates) on the screen
before explaining the use of the above commands and function.
The small numerals (horizontal: 0 to 159, vertical: 0 to 31) in the figure
below indicate dot locations (graphic coordinates), while the large
numerals (horizontal: 0 to 19, vertical: 0 to 3) indicate character coordi­
nates.
A character is drawn by 8 x 8 dots, and its display location has to be
determined.
Conversely, dots and lines can be drawn at any location using graphic
coordinates.
The straight line from (3, 29) to (29, 17) was drawn by a graphic com­
mand which allows graphics to be freely drawn anywhere.

Screen coordinates

101

CHAPTER 3 "BASIC" REFERENCE

Graphic coordinates consist of 5120 dots with 160 dots in the X direc­
tion and 32 dots in the Y direction. The top left corner of the screen is
(0, 0), and the bottom right corner is (159, 31).
Dot locations on the screen can be specified using these coordinates.
For example, to draw a dot at the (X, Y) location, use

DRAW (X, Y)

and to erase a dot at (X, Y), use

DRAWC (X, Y)

A straight line can be drawn with the same command by specifying the
coordinates at both ends (X1, Y 1) - (X2, Y 2) of the line as follows.

DRAW (X1, Y1) - (X2, Y2)

A line that connects three dots (X1, Y1) - (X2, Y2)- (XJ, YJ) can be
drawn by specifying the following.

DRAW (X1, Y1) - (X2, Y2) - (XJ, YJ)

Any number of lines can be drawn as a single line by linking coordinates
with"-".
A straight line can be erased by specifying the following.

DRAWC (X1, Y1) - (X2, Y2)

When a dot at a specified location is lit (drawn), the POINT function
produces 1, and when not lit 0. For example, the point at (X, Y) can be
checked as follows.

POINT (X, Y)

The values 1 which indicates a dot is drawn, and 0 which indicates a dot
is not drawn can be used in a program by assigning the value to a vari­
able as follows.

A= POINT (X, Y)

Let's look at programs for drawing polygons using the method for
drawing a straight line that was previously explained.
To draw a polygon, link the coordinates at the vertexes with the DRAW
command.

102

3-22 GRAPHIC COMMANDS AND SCREEN COOR DINA TES

■ Triangle
A program that draws a triangle with vertexes (100, 5), (85, 25), (125,
25) is as follows.

10 REM --- TRIANGLE ---

20 CLS

30 DRAW(100,5)-(85,25)-(125,25)-(100,

5)

40 END

Coordinate specification by the DRAW
command can also be performed with
numerical expressions.
For example, the program above can be
rewritten using numerical expressions
as follows.

Triangle drawn on the screen

10 REM --- TRIANGLE ---

20 CLS

30 X= 100: Y=5 ······ Dot coordinates where drawing starts.

40 DRAW<X,Y)-(X-15,Y+20)-(X+25,Y+20)-

<X,Y)

50 END

103

CHAPTER 3 "BASIC" REFERENCE

■ Rectangle

The following program draws a rectangle with the straight line (80, 5) -
(150, 28) as its diagonal.

10 REM --- RECTANGLE ---

20 CLS

30 DRAW(80,5)-(150,5)-(150,28)-(80,28

)-(80,5)

40 END

■ Equilateral Pentagon

An equilateral polygon is one that is inscribed
inside a circle with each vertex having equal
spacing.
The figure on the right shows an equilateral
pentagon inscribed inside a circle with radius R.
The lines that connect the 5 vertexes with the
center of the circle all cross at the same angle,
A (in this case A=72

°

).
A program for a pentagon inscribed inside a
circle with a center (100, 18), and a radius
15 can be drawn as follows.

10 REM --- PENTAGON ---

20 CLS

30 R=15 ········· Radius

40 X= 100: Y= 18 ········· Center of circle

50 A=360/5 ········· Angle

60 FOR !=0 TO 360 STEP A

70 DRAW<X-SIN(I)*R,Y-COS(I)*R)-<X-SIN

<I+A)*R,Y-COS<I+A)*R)

80 NEXT I

90 END

104

3-22 GRAPHIC COMMANDS AND SCREEN COOR DINA TES

■ Equilateral Polygon N

Equilateral polygon N can be freely drawn by changing angle A in the
program for the pentagon.

APentagon = 360/5

Polygon N A = 360/N

The following is a general purpose program that draws an equilateral
polygon N after N is entered.
The center of the circle is (H>O, 15).

10 REM --- POLYGON

20 CLS

30 R=15 ········· Radius

40 X= 100: Y= 15 ·········· Center of circle

50 INPUT "N=" ; N ········· Equilateral polygon N

60 A=360/N ········· Angle of equilateral polygon N

70 FOR 1=0 TO 360 STEP A

80 DRAW(X-SIN(I)*R,Y-COS(l)*R)-CX-SIN

(l+A)*R,Y-COSCI+A)*R)

90 NEXT I

100 END

105

3-23 DRAWING A CURVE

A curve can be drawn by specifying dot coordinates on the screen.
The problem, however, is how to specify the coordinates.
Many different curves can be drawn using mathematical formulas.
Let's draw a circle and SIN curve as follows.

■ Circle

As the value N in the equilateral polygon program of the last section
increases, the resulting figure comes closer to being a circle. Although,
from a strictly geometrical point of view, a polygon can never be a circle,
curves are actually produced on the screen by linking a series of straight
lines.
The following program produces a circle with a radius of 15 originating
at coordinates (lQ)�, 15).

10 REM --- CIRCLE

20 CLS

30 FOR 1=0 TO 360 STEP 5

40 X=100+COS(I)*15 • • • • • • • • • Horizontal dot position

Y=15-SIN(l)*15
on the circular arc.

50 · · · · · · · · · Vertical dot position on
the circular arc.

60 DRAW<X,Y)

70 NEXT I

80 END

106

3-23 DRAWING A CURVE

■ SIN Curve

The value of the SIN{I) function changes from 0 to 1 to 0 to -1 to 0 as

the value of I progresses from 0
°

to 360
°

.
Therefore, a sine curve can be produced by drawing dots {that have been

magnified to a suitable size) along a vertical axis: The following program

draws a sine curve together with the X and Y axes.

10 REM --- SINE ---

20 CLS

30 A=65: B= 15 ······ SIN curve origin (origin of the X, Y axes).

40 M=12 • • • • • • • • • • • • Enlargement

50 FOR I=0 TO 360 STEP 4

60 X=A+ I /4 ························ X coordinate dot

··········· Y coordinate dot 70 Y=B-S IN (I) *M ·

80 DRAWCX,Y)

90 NEXT I

100 DRAWCA,2)-CA,28) ·········Yaxis

110 DRAWCA, 8)-CA+92, 8) ·········Xaxis

120 END

107

3-24 DRAWING A LINE GRAPH

Line graphs are often used when time variations are checked, such as a
temperature changes or price changes over a period of time.
Therefore, it is recommended that the screen be fully utilized so that
changes can be clearly seen.

■ Monthly Average Temperature

It is assumed that the monthly average temperature in a certain city is
as shown in the following table. Data is entered in the program using a
DAT A statement. Then the monthly average temperature is drawn by
the line program while data are supplied using a READ statement.

Jan.

Feb.

Mar.

Apr.

10

20

30

40

50

60

?0

80

90

100

110

120

130

140

11.5

9.8

13.7

18.3

May

June

July

Aug.

19.8

23.4

26.6

28.2

Sep.

Oct.

Nov.

Dec.

REM --- LINE GRAPH ---

CLS

FOR I=l TO 3

PRINT 30-(I-1)*10:CHR$(147)

NEXT I

PRINT TA8(3);CHR$(154);

FOR I=l TO 12

PRINT CHR$(144);

NEXT I

FOR I=l TO 12

X=36+< I-1)*8

READ A

Y=4+(30-A)*0.8

IF I=l THEN 160

108

22.3

18.5

15.9

14.7

3-24 DRAWING A LINE GRAPH

150 DRAW(P,Q)-<X,Y)

160 P=X:Q=Y

170 NEXT I

180 DATA11.5,9.8,13.7,18.3,19.8,23.4,2

6. 6, 28. 2, 22. 3, 18. 5, 15. 9, 14. 7

200 IF I NKEY$=" " THEN 200 Prevents the screen from

210 END
scrolling.

A portion of the dot pattern is magnified as shown below to help visualize
the locational relationship of the graph's values, vertical axis (Y), horizon­
tal axis (X), and lines. When you prepare a program for drawing a pattern
or graph, it is recommended that such a picture be drawn to determine
the locational relationship.

Dot Pattern

If line 200 were omitted, a command wait occurs soon after program
execution has terminated which causes the following display and de­
stroys the graph.

Ready P0

Line 20Ql preserves the graph on the screen until a keys is pressed.

109

3-25 PREPARATION FOR DRAWING
A BAR GRAPH

■ Drawing A Bar Graph Using Characters

When you execute the following program and enter the numerals from 1
to 20 to N, N number of - marks are displayed continuously.

10 CLS

20 INPUT "N="; N

30 FOR I=l TON

40 PRINT CHR$(131);

50 NEXT I

60 END

The length of the bar is proportional to the value of N. Since this unit is
capable of displaying 20 characters in one line, however, it is necessary
to scale N to keep values that exceed 20 within the limit of the screen.
For example, to display a value of 100, the program above is modified
as follows.

30 FOR I =1 TO N/6

or

30 FOR I = 1 TO N STEP 6

It should be noted that with this program values from 90 through 95
would produce bars of the same length, so this technique is only capable
of rough approximations. Graphics can be used to overcome this problem.

■ Using Graphics In A Bar Graph
The above program can be rewritten to include graphics as follows. By
employing graphics, a total of 160 display units are available for resolu­
tion that is 8 times greater than the method used above.

110

3-25 PREPARATION FOR DRAWING A BAR GRAPH

10 CLS

20 INPUT "N="; N

30 FOR 1=1 TO N*l. 5

40 DRAW<I-1,8)-(1-1,14)

50 NEXT I

60 END

While the bars used for this program are plain, easy-to-read graphs can be
drawn by changing the pattern of the bars.
Bar graphs can be drawn with the following patterns by adding or substi­
tuting the following routines (a) to (d) in the above program.

35 IF I=N*l-5 THEN 40

36 IF I MOD 2=0 THEN 50

30 FOR I=B TO 14 STEP 2

40 DRAW C 0, I) - C N* 1 . 5-1 , I)

35 FOR J=B TO 14 STEP 2

40 DRAW< I - 1 , J + C I+ 1) MOD 2)

45 NEXT J

25 FOR J=B TO 14

30 FOR I=l TO N*l.5 STEP 3

35 X=CJ-8) MOD 3+1-1

36 IF X>N*l.5-1 THEN X=N*l.5-1

40 DRAWCX,J)

50 NEXT !:NEXT J

111

3-26 TWO EXAMPLES OF BAR GRAPH
PROGRAMS

Bar graphs are often used to provide representation of relative relation­
ships among academic scores, sales, production amounts, etc. Besides
this, the graph must be scaled to accurately show the magnitude of each
item while keeping within the physical restrictions of the screen.
Basically, bar graphs can be classified into two general categories. The
first type shows the relationship among a number of quantities by assigning
each quantity to its own bar. (i.e. production or sales totals for individual
products.) The second type shows the relationship of individual quan­
tities to the whole. (i.e. production or sales totals for individual products
compared with overall totals.)
Now let's prepare programs for both of these two basic types.

Data example: Production amounts for vehicles A and B are shown in
the following table.

48,200

39,200

57,200

31,100

67,200

27,500

Pattern of the bar graph for vehicle A.

Pattern of the bar graph for vehicle B.

■ Assigning Each Item To Its Own Bar

10 REM --- BAR GRAPH ---
20 CLS

30 FOR 1=0 TO 2

40 LOCATE 0,I

50 PRINT 80+I:CHR$(136)

60 FOR J=l TO 2

70 READ A

80 FOR K=0 TO 2

112

3-26 TWO EXAMPLES OF BAR GRAPH PROGRAMS

90 Y=I*8+(J-1)*4+K

100 IF J=2 THEN IF K=l THEN DRAW(24+A/

500,Y):GOTO 120

110 DRAW(25,Y)-(24+A/500,Y)

120 NEXT K:NEXT J:NEXT I

130 IF INKEY$="" THEN 130

140 END

150 DATA48200,39200,57200,31100,67200,

27500

Display Example

■ Comparing Individual Totals with Overall Total

10 REM ---BAR GRAPH ---

20 CLS

30 FOR I=0 TO 2

40 LOCATE 0,I

50 PRINT 80+I:CHR$(136)

60 READ A,B

70 FOR J=0 TO 6

80 Y=I*8+J

90 DRAW(25,Y)-(24+A/1000,Y)

100 NEXT J

110 X=24+A/1000:Y=I*8

120 DRAW<X+l,Y)-<X+B/1000,Y)-(X+B/1000

,Y+6)-(X+1,Y+6)

113

CHAPTER 3 "BASIC" REFERENCE

130 NEXT I

140 IF INKEY$=" JI THEN 140

150 END

160 DATA48200,39200,57200,31100,67200,

27500

Display Example

114

3-27 ANIMATION DRAWING

When you execute the following program, the * mark moves to the left
and right.

10 CLS

20 FOR I=5 TO 15

30 LOCATE I,1

40 PRINT " *"
Moves from left to right.

50

60

70

80

90

100

NEXT ·I

FOR I=15 TO

LOCATE I,1
11 II PRINT *

NEXT I

GOTO 20

5 STEP -1

Moves from right
to left.

As can be seen above, the control variable (I) increments from 5 to 15.
This means that the coordinates of the LOCATE command in line 30 are
sequentially changed from (5,1) through (15,1). It should be noted that
the PRINT command in line 40 is written with a space inserted in front
of the " * ".
Th is space is essential because it "erases" the previously drawn " *" by
replacing it with an empty space. This sequential displaying and erasing
along successive positions produces an illusion of movement from left to
right. Lines 60 through 90 decrement the control variable to reverse the
procedure and cause the "* " to move from right to left on the screen.
This short program represents the basic principle of graphic animation.
Vertical movement is performed in a similar manner, but, since the"*"
is displayed in successive lines of the screen, a statement must be added
to return one line to erase the previous "* ". The following program
illustrates vertical animation.

11

10 CLS

20 FOR I=0 TO 3

30 LOCATE 10,I:PRINT "*";

40 IF I=0 THEN 60

50 LOCATE 10,I-1:PRINT "

60 NEXT I

115

Moves from up to down.

CHAPTER 3 "BASIC" REFERENCE

70 FOR 1=3 TO 0 STEP -1

80 LOCATE 10,I:PRINT
11*11;

90 IF 1=3 THEN 110

100 LOCATE 10,I+l:PRINT
"

110 NEXT I

120 GOTO 20

■ Adjusting Speed

II

Moves from
down to up.

If the * mark moves too fast in the above program, the speed is con­
trolled using a FOR-NEXT statement.
Execute the program after adding the following line to the horizontal
movement program.

45 FOR J=1 TO 50:NEXT J

When this statement is used, the speed of the movement from left to
right becomes slightly slower. The speed is increased by reducing the
final value of the FOR-NEXT statement, and is reduced by increasing
the value.

■ Moving A Dot Like A Curved Line
The movement of a dot to form a curved line is accomplished using
graphic coordinates.
In the following program, a dot repeatedly moves along a dotted line
enclosed within a frame. (See Execution Example.)

10 CLS

20 DRAW(13,0)-(13,31)-(137,31)-(137,0)

30 DRAW(14,0)-(14,30)-(136,30)-(136,0)

116

3-27 AN/MA TION DRAWING

40 N=l:P=14

50 FOR 1=0 TO 360 STEP 3

60 X=P+N:Y=29-25*ABS<COS(l))

?0 DRAW<X,Y)

80 IF P=14 THEN 100

90 DRAWC<P,Q)

100 P=X:Q=Y

110 NEXT I

120 N=-N

130 GOTO 50

Execution Example

■ POINT Function

The POI NT function checks to see whether a dot is drawn or not at a
specified location of the graphic coordinates.
If a dot is positioned at horizontal coordinate (X) and vertical coordinate
(Y).

POINT (X, Y) · · · -1

If a dot is not at that position,

POINT (X, Y) · · · · 0

The following program provides an example of the POI NT function.
At first, "CASIO PB-77Q.l" is displayed on the first line, then the
POINT function checks whether each dot is drawn or not, and copies
it to the third line depending on the value of (X,Y).

117

CHAPTER 3 "BASIC" REFERENCE

10 CLS

20 PRINT "*** CASIO PB-7?0 ***"

30 FOR X=0 TO 159

40 FOR Y=0 TO 7

50 IF POINTCX,Y)=0 THEN 70

60 DRAWCX,Y+16)

70 NEXT Y

80 NEXT X

90 IF INKEY$="" THEN 90

100 END

Lines 30 through 80 confirm whether or not dots are drawn in the first
line of the character coordinates. If dots are not present, execution
jumps from line 50 to line 70. If dots are detected, they are reproduced
at the same location of the character coordinates in the third line.
A hard copy of the display can be produced using the optional F A-10 or
F A-11 plotter-printer. Though details on the use of printers are included
in another section, the following program is included as reference.

10 CLS

20 PRINT "CASIO PB-7?0"

25 LPRINT CHR$C28);CHRiC37)

30 FOR X=0 TO 159

40 FOR Y=0 TO 7

50 IF POINTCX,Y)=0 THEN 70

55 U=X*0.59:W=Y*0.59

60 LPRINT "D";U;",";-l:lcW;",";U+0.4;",

";-1:!:CW+0.4)

70 NEXT Y

80 NEXT X

90 IF I NKEY$="" THEN 50

100 END

118

3-28 GAME APPLICATIONS

The animation learned in the previous sections is often used for games,
and the following program illustrates this. Though requiring no particular­
ly difficult technique, games require routines that realistically produce
graphic animation.
The length of the program may make it look rather imposing, but it is
suggested that the user try some modifications to become familiar with
the function of each line. This is one of the best ways to add new pro­
gramming techniques to your repertoire.
First, input the following program.

10 REM ---BLOCK DESTROY---

20 CLS

30 FOR 1=0 TO 3

40 LOCATE 2,I:PRINT CHR$C137);

50 NEXT I

100 FOR 1=3 TO 6

110 FOR J=0 TO 3

120 LOCATE I,J

130 PRINT CHR$Cl41);

140 NEXT J:NEXT I

200 LOCATE 17,1

210 PRINT CHR$Cl47)

220 R=1:S=0

300 FOR N=3 TO 1 STEP -1

310 LOCATE 0,0:PRINT N

320 X=10:Y=INTCRND*2+1):A=1:B=l

330 LOCATE X,Y:PRINT CHR$C236);

340 Q$=INKEY$

350 IF Q$= '' 1" THEN GOSUB 500 ELSE IF Q

$="0" THEN GOSUB 600

360 IF X=3 THEN A=-A

370 IF Y=0 THEN B=-B ELSE IF Y=3 THEN

B=-B

119

CHAPTER 3 "BASIC" REFERENCE

ELS

380 IF X=16 THEN GOSUB 800

390 LOCATE X,Y:PRINT " ";

400 IF X>16 THEN 440

410 G=(X+A)*8:H=(Y+B)*8

420 P=POINT<G,H)

430 IF P=l THEN GOSUB 700

440 X=X+A:Y=Y+B

450 IF X)18 THEN BEEP :BEEP :BEEP

E 330

460 NEXT N

470 CLS : LOCATE 2, l: PRINT ''SCORE 11: S

480 FOR I=l TO 6:BEEP 1:NEXT I

490 IF I NKEY$= '' '' THEN 490 ELSE END

500 LOCATE 17, R: PR I NT ,, 11 ;

510 R=R-1

520 IF R<0 THEN R=0

530 LOCATE 17,R:PRINT CHR$C147);

540 RETURN

600 LOCATE 17, R: PR I NT 11 ";

610 R=R+l:IF R>3 THEN R=3

620 LOCATE 17,R:PRINT CHR$(147);

630 RETURN

700 S=S+8-X:BEEP 1

710 LOCATE X+A,Y+B:PRINT 11 ";

720 X=X+A:Y=Y+B:A=-A

730 IF Y=0 THEN B=-8 ELSE IF Y=3 THEN

B=-B

740 RETURN

800 IF Y=R THEN A=-A:BEEP ELSE IF Y+B

120

=R THEN BEEP ;A=-A ELSE 830

3-28 GAME APPL/CATIONS

810 IF RND<0.7 THEN 830

820 LOCATE X,Y;PRINT " ";:X=X-1

830 RETURN

Line 420 uses a POINT function to check whether or not a dot is present
at a certain location of a block. It does this by checking only the coordi­
nate of the top left corner as shown below.

■ How To Play
When this program is executed, blocks are drawn on the left and a racket
is drawn on the right. A ball moves across the screen and the player must
move the racket into place to keep the ball in play. Pressing the [D key
raises the racket and pressing the [ID key lowers the racket. If the player
misses the ball with the racket, a miss is registered and the next ball is
served. Missing three times ends the game. The final score is displayed at
the end of the game.

■ Variable Table Of Block Destroying Program

A,B Ball direction
G, H Coordinates for checking whether a block is drawn or not

I, J Variables for drawing blocks and fence
N Number of remaining balls
P Check whether a block is drawn or not

Q$ Racket direction
R Racket position
S Score

X, Y Ball position

121

3-29 DRAWING A PATTERN WITH THE
PLOTTER-PRINTER

Hard copy can be produced with the connection of the optional F A-10 or
F A-11 plotter-printer with cassette interface. Though a plotter-printer
can be used for printing of text, it is especially suited for graphics. Both
types of output are produced by drawing a number of dots in series to
form the final figure.
This is similar to the method used for the production of figures on the
screen, but the mechanical operation of the printer necessitates special
commands to increase speed.
Though there are large number of plotter commands, their use makes
operation much faster and contributes much to making programming
easier.

■ Commands

All commands for making graphics with the plotter-printer start with
LPRI NT. Many functions can be performed when the commands shown in
the command table are used together with LPRINT.
However, it is necessary to specify the graphic mode with the following
statement before using these commands.

Graphic mode specification: LPR I NT CH R$(28); CH R$(37)

The following statement is used to cancel the graphic mode (i.e., to
specify the character mode).

Character mode specification: LPRINT CHR$(28); CHR$(46)

122

3-29 DRAWING A PATTERN WITH THE PLOTTER-PRINTER

Plotter Command Table

0

D

M

R

A

C

X

G

L

B

s

Q

ORIGIN

DRAW

RELATIVE
DRAW

MOVE

RELATIVE
MOVE

QUAD

CIRCLE

AXIS

GRID

LINE
TYPE

LINE
SCALE

ALPHA
SCALE

ALPHA

ROTATE

Origin specification of ORG coordinates

Links a dot with a dot specified by ORG
coordinates.

Draws a line up to a specified dot.

Moves to position indicated by ORG
coordinates without plotting.

Moves to specified position without
plotting.

Draws a parallelogram on X and Y axes
with the diagonal of 2 dots indicated by
ORG coordinates.

Draws a circle and circular arc with a dot
specified by ORG coordinates as the
center.

Draws a coordinate axis from the origin
of ORG coordinates in direction of +Y,
+X, -Y, and -X.

Draws horizontal or vertical stripes in a
specified square.

Draws a solid line, broken line, one-dot
chained line, or two-dot chained line.

Specifies the pitch of a broken line, one­
dot chained line, or a two-dot chained
line.

Specifies the size of characters and sym­
bols.

Specifies the rotary direction of charac­
ters and symbols.

123

CHAPTER 3 "BASIC" REFERENCE

Y

SPACE

VERTICAL

or
HORIZONTAL

p PRINT

N MARK

NEW PEN

Specifies character spacing for a following
digit and line.

Specifies horizontal or vertical writing.

Prints a character string.

Draws a mark with a pen position as its
center.

Pen color selection

F LINE FEED Paper feed and paper return by one line
unit.

H HOME

CHR${64) TEST

T TAB

? FORMAT

Modifies absolute coordinates, or shifts
the pattern to a location that is easy to see.

Checks pen use and pen ink.
Execution Example:
LPRINT CHR${28) ; CHR${37);
CHR$(64)@)

Tabulator

Program list output

124

z

J

3-30 USING THE PLOTTER-PRINTER

Now let's produce a simple pattern using the plotter-printer. The follow­
ing program connects the points at (0,0), (70,-30) and (90, 10) with two
straight lines. Therefore, the D command should be used.

10 LPRINT CHR$(28);CHR$(37)

20 LPRINT "D":0;",";0:",":70:",":-30:

" , " ; 90; " , " ; 10

Execution Example

The same technique can be used to connect any number of points
desired (as long as one programming line stays within the maximum of
79 characters).

The next program produces a circle graph. The C command is usually
used to produce a circle with the plotter-printer, but lines must also be
included to divide the circle to reflect the size of various data.
This particular program will use the data 100, 200, 300, 400 and 500 as
the data.

10 LPRINT CHR$(28):CHRS<37)

20 LPR INT "C48, -50, 30 ''

30 S=0:T=0

40 FOR I=l TO 5:READ A:T=TTA:NEXT I:R

ESTORE :A=0

50 FOR I=l TO 5:Al=A

60 READ A:S=STA

125

CHAPTER 3 "BASIC" REFERENCE

70 X=48+INTC30*SINC360*S/T)):Y=-50+IN
TC30*COSC360*S/T))

80 LPR I NT II D48, -50, 11; X; 11
,

11
;

y

90 A2=(Al+A)/2:GOSUB 200:NEXT I
95 END

100 DATA100,200,300,400,500
200 X=50+INTC20*SIN<360*S/(T+A2))):Y=-

48+INTC20tCOS(360*S/(T+A2)))
210 LPRINT 11M'': x-10: 11

,
11

:
y

220 8$=STR$CA)
230 LPRINT 11P";8$

Execution Example240 RETURN

Line 40 contains a READ command that reads the data in line 100.
Lines 60 and 70 compute locations X and Y on the circumference of the
circle for all the data. Then line 80 connects each point (X, Y) with the
center of the circle.

126

3-31 USING PB-700 PROGRAMS

Though the PB-770 has more functions than the CASIO PB-700, pro­
grams written for the PB-700 can be used with the PB-770 without
modification.

It should be noted, however, that compatibility is only upward, and
certain programs written for the PB-770 cannot be executed with the
PB-700 without modification. Programs for the PB-770 must be rewritten
using only commands that can be executed with the PB-700.
Programs or data stored on cassette tape from the PB-700 can also be
used with the PB-770 without modification, but programs or data files
(DF) stored on cassette tape from the PB-770 cannot be read with the
PB-700,
The difference between the PB-770 and PB-700 is as follows.

• Additional command

POKE

• Additional functions

DEG, HYPSIN, HYPCOS, HYPTAN, HYPASN, HYPACS,
HYPATN,PEEK,DMS$,HEX$,&H

• Modified commands

PRINT, CLEAR

• Modified function

CHA$

CAUTION: When using programs written for the PB-700, if DATA state­
ments are included in lines 2200 through 2299 or in lines
with 22 in the last two digits of the line numbers (e.g. 22,
122, 622), change the line numbers. (See page 208.)

127

CHAPTER 3 "BASIC" REFERENCE

The following terms are used in the "Format" section of each com­
mand or function described in Chapter 4.

• "Numerical expression"
Numerical values, variables and computation expressions. Numerical compu­
tations are performed according to the precedence of the operators.

• "Character expression"
Character constants, character variables and character strings.
Character strings can be concatenated using the symbol "+". That is, addition
of character strings makes a character expression.
(Example) "ABC"+ "DE"+ "F" = "ABCDEF"

Note that the number of characters of a character expression concatenated by
+ should be 79 or less.

• "Variable"
Variables are used to store data. Since there are two types of data {numerical
values and characters or symbols), there are numerical variables (such as A or
B) and character variables {such as A$ or 8$). Refer to Chapter 3 for details.

• "Variable name"
A variable is an uppercase letter {A to Z) or it can be followed by$, number,
or uppercase letter.
(Example) A, A$, AB, A 1, XY$, X1 $... etc.

"Variable name" means th is format of variable.
• "Conditional expression"

A relational expression which compares the left side value and right side value
using relational operators {such as =, =<,>,<>, etc.)

• "Line number"
A number which is attached to the first position of each program line. Num­
bers 1 to 9999 can be used.

• "Comment
Comments are written at appropriate parts of a program in order to explain
program contents.
They do not affect the program execution at all.

• "Message"
Messages are displayed on the screen in order to let you perform proper
in­put or to make the output easy to understand. They are used by
enclosing them with " ".

• "File name"

A file name identifies programs or data transferred between cassette tape and
the computer.

128

COMMAND
REFERENCE

CHAPTER 4

4-1 MANUAL COMMANDS

AUTO

Function Automatically numbers program lines.

AUTO [first line
number
number]

�1
1�
�

first line
increment� 9999)

� 9999)
[,increment]

Format

The AUTO command greatly facilitates

programming by generating
sequential line numbers at preset increments.

With each press of the @@ key, line numbers are continuously generated
from the line number specified by the first argument and incremented by
the step specified by the second argument. The default value for both
the first line number and the increment

is 10. This command cannot be

executed with a password being specified.
This command can be released by the following operations.

2)
1) Pressing

Pressing th
the

e�
� key

rlill)o
without

input after the line number is displayed.

key.

numbumn (•displayed af
4)
3)

When
Attempting

an
to

automatically
exceed line

generated
number

ter the lin
l

il

999
ine
nu

9.

mber).
number equals an existing line

AUTO 100
The
100 at

above
increments

input
of

causes
rn (i.e.

sequential
100, 110,

generation
120, etc.).

of line numbers from line

AUTO 50, 50

The above input causes sequential generation

of line numbers from line

50,at increments of 50 (i.e. 50, 100, 150, etc.).

130

4-1 MANUAL COMMANDS

CONT

Function
To restart the execution of a program that was

key entry.

Format

suspended by a STOP statement or

CONT

The CONT command is used to restart program execution stopped by
the STOP command in a program or by operating the key. Program
execution restarts from the statement following the STOP command.
Once program execution is suspended, numerical variables can be checked
or changed before restarting, making this command a valuable debugging
tool.

Insert the STOP command between sections during program preparation
to provide easy debugging.
The following program was prepared as an example.

10 READ R,H

20 S:::PI*R"2

30 STOP

40 U:::S*H

50 PRINT R,H,S,U

60 DATA 10,20

70 END

When you execute this program with the RUN command, program
execution is suspended at line 30 by the STOP command.
Check the execution content of line 10 and line 20. To display the values
of the variables, press R , H and S . Then 10, 20 and
314.1592654 appear which proves that execution has been performed
correctly.
After checking has been completed, resume program execution using the
CONT command.

CONT�

g- STOP

131

CHAPTER 4 COMMAND REFERENCE

DELETE

Function

Formats

Provides partial program deletion by line units.

DELETE In
DELETE In-
DELETE -Im
DELETE In-Im
In: First line to be deleted. Im: Last line to be deleted.

(1 �In� Im� 9999)

This command is used to delete a specific line in a program or lines in a
specified range.
When DELETE is used, it has the following basic formats.
(1) DELETE line number Deletes a specified line.
(2) DELETE line number - Deletes lines from a specified line to

(3) DELETE - line number ...
(4) DELETE line number n

the last line of a program.
 Deletes all lines up to a specified line.

- line number m Deletes the lines from
n to line number m.

In and Im have the following restriction.
1 � In � Im � 9999

This command cannot be used in a program.

line number

A detailed explanation is provided using the following program.

10 REM DELETE SAMPLE
20 PRINT "20:A"

30 PRINT "30:B"

40 PRINT "40:C"

50 PRINT "50:D"

[Il DELETE line number �
For example, when line 30 in the above program is to be deleted, enter
the following.

DELETE 30 �

132

4-1 MANUAL COMMANDS

Also, the same deletion can be performed by the following operation_
30 �

[2] DELETE line number - � (Use the El key to enter a"-".)
When the lines from line 30 to the last line are to be deleted in the above
program, enter the following.

DELETE 30 El�

Also, line 30 and after are deleted by:

DELETE 25 El�
If there is no line 25, line 30, which is closest to that number, and all of
the following lines are deleted.

� DELETE - line number�
This command deletes the lines from the beginning of the program to a
specified line number. As an example, enter the following.

DELETE El 40 �

Check the listing with � � , to determine that lines 10-40 were
deleted. The same result can be realized by entering the following.

DELETE El 47 �

Again, though there is no line 47, the lines from the beginning of the
program to the nearest line inside of 47 are deleted.
@] DELETE line number n - line number m �
To delete the lines from line 20 to line 40 from the previous program,
enter the following.

DELETE 20 840 �

■ Attempting to use the DELETE command in a program protected by
the PASS command will result in a PR error.

■ Including a fractional part in the line number will result in an SN error.
■ If n is greater than m in item @ above, or if a specified line number

does not exist, nothing will be deleted.

.. NEW, NEW ALL, PASS

133

CHAPTER 4 COMMAND REFERENCE

EDIT

Function

Format

Allows a program to be modified.

EDIT
EDIT In (1 �In� 9999)

■ Using The Edit Keys

(1)§1,[B

1"

(E)

•

@)

.

(2) @ill]

@ill]

(3) @)

(4) @fill

Moves the cursor to the right and left. Holding
down either key will move the cursor in the re­
spective direction until the end {beginning) of the
line is reached.
The cursor can be moved up and down by press­
ing the @fill key and the Cursor key at the same
time.
If the key is held down, characters are continuous­
ly deleted until the key is released.
If the key are held down, spaces are continuously
generated until the keys are released.

Now let's edit a program by inputting the following program.

10 PRINT "AUERAGE"

20 INPUT A,B,C

30 H=CA+B+C)/3

40 PRINT H

50 GOTO 10

134

The EDIT command is used to edit a program for deletions, additions,
corrections, etc.
The first line of a program is displayed by EDIT � , and the cursor
appears at the end. Move this cursor to the position where a correction
is to be made with §) , §I , � CB or � §J , and perform correc­
tions with @I or � iii .

4-1 MANUAL COMMANDS

[I] Checking A Program List From The Beginning

To display a program from the beginning and correct 1 line at a time, the
following is used.

EDIT�
Next, each time the� key is pressed, the next line will be displayed.

[2.] Checking A Program List From The End (IN REVERSE)

To display line 10 of a program after the program has been listed from
the beginning to line 50, perform the following operation.

Program list displayed
up to line 50.

20 I NP UT A, B, C

30 H= (A+B+C) /3

40 PRINT H

50 GOTO 1 0-

(l.

Operate @ill! ™ four
times until line H) is
displayed as shown on
the right.

40 PRINT H

30 H = (A + B + C) / 3

20 I NP UT A, B, C

10 PR I NT "AVERAGE"_

llow­o

@] Checking A Program From A Middle Line Number

To check a line number in the middle of a program, perform the f
ing operation.

EDIT line number�

After this, the subsequent lines are displayed every time the � key is
pressed.

135

CHAPTER 4 COMMAND REFERENCE

@J Using §I , @) , �
Line 2© and line 30 in the program are corrected as follows.

20 INPUT A, B, C, D

30 H=(A+B+C+O)/4

When you use EDIT� to list line 2©, the display is as follows.

@fill ffi 2 0 �
Ready P0

EDIT 2 0

2 0 I N P U T A, B, C

In line 20, after entering"," and then "D", the correction is completed
by pressing the(�] key and line 30 will be displayed.

0@ �

Ready P0
EDIT 20

20 INPUT A,B,C,D
3Q H= (A+B+C)/3_

To insert "+D" in line 3e.l, provide space for two characters with:

Pressed together

and press (±)@] §)§JG] @l

■ If the EDIT command is used for a program with a password, a PR
error will occur.

■ Edit Mode Release
The Edit Mode is released as follows.
(1) When the � key is pressed.
(2) When the (@ key is pressed.
(3) When incorrect operation is performed.
(4) When there is no program to be displayed.
(5) When the power is turned off.

136

4-1 MANUAL COMMANDS

LIST/LLIST

Functions
LIST: Displays the contents of a program.
LUST: Prints out the contents of a program.

Formats

LIST LUST
LIST LUST ALL
LIST LUST V
LIST LUST In
LIST LUST In­
LIST LUST -In
LIST(LLIST In-Im

In, Im : line numbers

(1 � In � Im � 9999)

The LIST and LUST commands are used to view programs stored in the
PB-770. LIST produces the program on the display while LUST prints
out the program on roll paper.
Not only programs, but registered variables can be listed.

LIST and LUST commands are utilized as follows.

IT] LIST (LUST)�
This command sequentially displays (prints) all of the lines of a program
in the current program area beginning from the first line.

[I] LIST (LUST) ALL�
The PB-770 has a total of 10 program areas from P0 through P9, each of
which can be used for input of independent programs. This command is
used to display (print) all programs in all of the program areas.

[TI LIST (LUST) V �
This command is used to display (print) all of the presently used register­
ed variables. Besides registered variables, the array names for arrays
declared using the DIM command can also be displayed (printed).

@J LIST (LUST) line number�
When a line number is specified after LIST (LUST), that line of the
program in the present program area will be displayed (printed). To
display line 30 of a program located in program area PS, for example,
perform the following key operation:

PROG 5 � LIST 30 �

137

CHAPTER 4 COMMAND REFERENCE

W LIST (LLIST) line number - � (Use the El key to enter a"-".)
When the line number is followed by a"-", the program in the present
program area will be displayed (printed) from the specified line number
to the end. The following key operation will display the program in the
present program area from line 71/J to the end.

LIST 71/J El �

[I] LIST (LLIST) - line number�
When the line number is preceded by a "-", the program in the present
program area will be displayed (printed) from the beginning to the speci­
fied line number. The following key operation will display the program
in the present program area from the beginning to line 101/J.

LIST El 100 �

[z] LIST (LLIST) line number n - line number m �
In this case, the program is displayed (printed) from line number n to
line number m. Since the program is displayed from the smaller line
number to the higher line number, n must be less than or equal to m.
The following key operation will display from line 50 to line 71/J of the
program in the present program area.

LIST 50 El 71/J �

[I] Suspending LIST, LIST ALL Execution

Because the lines of a program are displayed continuously when a
program is listed with the LIST command, it is difficult to confirm
the program content. To overcome this, press the � key to momentari­
ly stop the display. To resume the program listing, press the � key
again.
LIST command execution cannot be stopped with @ill) � .
When a program listing check is not required, press the � key to cancel
LIST or LIST ALL command execution.

� Leaving LLIST, LLIST ALL

When a program list is being printed out with the LLIST or LUST ALL
commands, temporary suspension cannot be performed with the� key.
You can only cancel LLIST command execution by pressing the @@ key.

138

4-1 MANUAL COMMANDS

LOAD

Function

Formats

Loads a program or data stored on a cassette tape into the
main frame memory.

LOAD
LOAD ALL
LOAD, A
LOAD, M
LOAD, D, address

The LOAD command is used to read back into the PB-770 a program or
data that was stored on a cassette tape by a SAVE command. The file
name that was used during SAVE is now useful. Enter the file name
together with the LOAD command, then the PB-770 automatically
searches for the file name and reads the program from the tape.
If a file name is not specified, the first program or data found is read in.

The LOAD command has the following formats.

(1) LOAD
Reads the first program found among those stored by SAVE or
SA VE "file name" into the presently specified program area.
There is no problem even if the program area during "SAVE" and
the presently specified program area are different.

(2) LOAD "file name"
Reads the program that was stored with the same file name into the
presently specified program area. In this case, the program area
during "SAVE" and the program area during "LOAD" can be
different.

(3) LOAD ALL
Reads programs that were stored by SAVE ALL to the same program
areas from which they were stored. Since there is no file name, the
programs found first among those stored by SAVE ALL are read in.

(4) LOAD ALL "file name"
Reads the programs into the PB-770 with the same file name among
those stored by SAVE ALL "file name".

139

CHAPTER 4 COMMAND REFERENCE

(5) LOAD, A/LOAD "file name", A
Reads a program into the PB-770 that was stored in ASCII code
(SAVE, A or SAVE "file name", A). If there is no file name, the first
program found is read in, and if there is a file name, the program
with the same file name is read in.

(6) LOAD, M/LOAD "file name", M
Reads a program that was stored by SA VE, A or SA VE "file name",
A. The difference between this format and LOAD A, LOAD "file
name" ,A is that reading a program in this format will not erase a
program already in the computer, provided that the line numbers
of the existing program are different from those of the program
read. List C

Reads List B into P0 by LOAD, A.

List A

List B

List D

Reads List B into P0 by LOAD, M.

140

4-1 MANUAL COMMANDS

(7) LOAD, D, address
Reads data that was stored in internal code {SAVE,D,address 1,address
2 or SAVE "file name",D,address 1,address 2). Addresses are restricted
to the range of -32769 < address < 65536. See CLEAR for details
concerning addresses.

ITJ SAVE and LOAD formats must match.
The format of the LOAD command must correspond to that used for the
SAVE command. Similarly, a program stored with SAVE ALL must be
read with LOAD ALL. The following table shows the relationship be­
tween the LOAD command and SAVE command.

[2] Password
If a program with a password is stored, the password is also stored. A
reference for when programs with a password attached are loaded is as
follows.
(1) LOAD can be performed at any time there is no password stored in

the PB-770. In this case, a stored password exists as a PB-770 pass­
word.

(2) When a password exists in the PB-770, LOAD can only be performed
when the program being loaded has the same password. If the pass­
words are different, a PR error will be generated.

141

CHAPTER 4 COMMAND REFERENCE

[3] Error during LOAD
(1) RW error

This error occurs when a parity error is generated during LOAD. In
this case, clear the program which has been loaded by entering NEW

� , and perform loading from the beginning.
(2) OM error

This error occurs when the memory capacity is insufficient. In this
case, clear unnecessary programs, make the first address of the data
area larger, or expand RAM capacity.

a" SAVE, VERIFY, CHAIN, PUT, GET, PASS

142

NEW/NEWALL

Function

Formats

Program erase.

NEW
NEW ALL

4-1 MANUAL COMMANDS

When new program input is performed, it is necessary to erase the pre­
vious program. The commands that erase the previous program are the
NEW/NEW ALL commands.

[TI NEW Command Functions

The NEW command erases a program in a specified program area with
the PROG command used to specify the program area. An attempt to
use the NEW command to erase a program protected by a passward (see
page 144, PASS) will result in a PR error.
Also, variables cannot be cleared (see page 158, CLEAR).

� NEW ALL Command Functions

The NEW ALL command erases the programs in all of the program areas
at one time. Since this command is effective when the PASS command
has been executed, careful confirmation should be performed when
it is used.
Not only programs, but all variables are cleared, the program area is set
to P0, ANGLE is set to 0 (DEG), and the data area is released (see
CLEAR).

The operation is as follows.

NEW � or NEW ALL �

143

CHAPTER 4 COMMAND REFERENCE

PASS

Function

Format

Protects a program by assigning a password.

PASS "password"

Often a program that was prepared with great effort is erased by mistake,
or is destroyed by writing another program on top of it.
Therefore, important programs are protected with this command to pre­
vent program corrections and erasures from being performed.

[I] PASS Command

The PASS command is utilized by entering:

PASS "Password with up to 8 characters" @®

When this command is used, program corrections and erasures cannot
be performed unless the password is cancelled. (This command cannot
be used in a program.) The following commands cannot be executed.

(1) AUTO
(2) DELETE
(3) EDIT
(4) LIST, LLIST
(5) NEW

Also, a program can not be newly written. The functions of the PASS
command are effective in all of the program areas. Conversely, the PASS
command cannot be assigned to only a single program area. An attempt
to execute any of the above listed commands when the PASS command
has been used will result in a PR error being displayed.

144

4-1 MANUAL COMMANDS

[2]. PASS Command Release

Characters, numerals and symbols can be used for a password with up
to 8 characters. To release a password, make an entry using exactly the
same password as follows.

PASS "Password with up to 8 characters" �

Therefore, if a password is entered and forgotten, the PASS command
function can never be released. Since a password cannot be observed, it
is recommended that something which cannot be forgotten, such as your
name, be used for a password. Also, before password entry is performed,
it is important to confirm that it is correct. If passwords are forgotten,
the only solution is to execute the NEW ALL command.
However, since the programs in all the program areas will disappear, they
should first be stored on a cassette tape using the SAVE command.

-- SAVE, LOAD, NEW

145

CHAPTER 4 COMMAND REFERENCE

PROG

Function

Format

Specifies a program area.

PROG numerical value (or numerical expression)
0 � numerical value (numerical expression)< 10

The PB-770 is provided with 10 program areas (P0-P9) where indepen­
dent programs can be written.
The PROG command is used to specify a program area.

When the power of the PB-770 is turned on, the display will be as follows.

Power ON Ready P0

When the power is turned on, the program area P0 is automatically
specified as shown above. Next, let's specify P9 as the next program
area.

Power ON Ready P0

PROG 9

Ready pg

Though a numerical expression can be entered after PROG, a computa­
tion result (X) within the range of 0 � X < 10 can also be used.
If it is outside this range, a BS error is displayed.

Examples PROG (100/20)
PROG (100/10)
PROG (100/15)

-- GOTO, GOSUB

Specifies P5 with PROG5.
Displays a BS error.
Specifies P6 (The fractional part is
discarded.)

146

4-1 MANUAL COMMANDS

RUN

Function

Formats

Executes a program.

RUN
RUN ln (1 � ln � 9999)

The RUN command is used to execute a program in the presently
specified program area.

The RUN command has the following two formats.

(1) RUN�
Starts program execution from the first line of the specified program
area. Execution is performed in a sequence with the smallest line
number first.

(2) RUN line number�
Starts execution from the line number after RUN. If the specified
line number does not exist, execution starts from the nearest line
number larger than the specified line number.

Execution can be started from the beginning of any program in a pro­
gram area without using the RUN command as follows.

Programs P0-P9 can be executed by pressing the
from at the same time.

147

key and any key

CHAPTER 4 COMMAND REFERENCE

SAVE

Function

Formats

Stores a program on cassette tape.

SAVE
SAVE ALL
SAVE, A
SAVE,D, address 1, address 2
SA VE "file name"
SAVE ALL "file name"
SAVE "file name",A
SAVE "file name",D, address 1, address 2

The SAVE command is used when a program is stored on cassette
tape.
This command has the following formats.

{1) SAVE Stores in binary code format a program from a
presently specified program area.

(2) SAVE ALL Stores in binary code format the programs of all
program areas.

(3) SAVE,A Stores in ASCII code format a program in a
presently specified program area.

(4) SAVE, D, address 1, address 2
Stores in binary code format the contents from
address 1 to address 2 of the memory. The range
of the addresses is -32769 < address 1 � address
2 < 65536. See CLEAR for information on
addresses.

• SA VE in ASCII code format requires more time and uses more tape
than SAVE in binary code format (internal code format).
However, it is necessary to use SA VE in ASCII code format to exe­
cute LOAD, M (see LOAD command}.

148

4-1 MANUAL COMMANDS

Assigning file names to each program stored on cassette tape makes pro­
gram handling easier.

OJ File Names

SA VE "file name"
SAVE ALL "file name"
SAVE "file name", A
SAVE "file name", D, address 1, address 2

• Although any character or symbol can be used as a file name, 8
characters or less must be used.

• For a program with a password, the actual password is also output as
data.

12] Recording Tape Counter Reading
When you press the � key with the cassette tape recorder in the
record mode, recording starts. The automatic remote function stops the
tape when it has terminated. Make a record of the tape counter reading
for recording start and end.

� Confirmation

Confirm if cassette tape recording was correctly performed using the
VERIFY command (see page 153, VERIFY). If it is not correctly re­
corded, perform the SAVE operation again.

149

CHAPTER 4 COMMAND REFERENCE

The file attribute names of programs or data which have been
stored by SAVE or PUT are displayed when they are loaded to the
computer by LOAD or GET.

Operation for output

SAVE
SAVE ALL
SAVE, A
SAVE, 0, address 1, address 2

SAVE "ABC"
SA VE ALL "ABC"
SAVE "ABC", A
SAVE "ABC", 0, address 1, address 2

Display during loading

PF B
AF B
PF A
OF B

ABC PF B
ABC AF B
ABC PF A
ABC OF B

The file names are displayed as they are.
Meanings of the file attributes are as follows.

Display during loading

PB-770 PF B

File name (A) (B) (C)

(A) P : Program
A : All programs
D: Data

(B) File

(C) B : Binary (Internal code format)
A: ASCII (ASCII code format)

150

4-1 MANUAL COMMANDS

SYSTEM

Displays program area status, specified angle unit,
Function memory capacity, number of remaining usable bytes,

and data area first address.

Format SYSTEM

First, input SYSTEM � , and a display similar to that shown below
will appear. The actual display will differ somewhat if a RAM expan­
sion pack is used, if programs are stored in the computer, or depending
on how much data area is available.
Enter SYSTEM � . If there is no program and data is stored in the PB-
770, the following is displayed.

ANGLE e P 0123456789

8KB 68718

Ready P0

The following points should be noted concerning each part of the
display.

(1) The P 0123456789 in line 1 indicates whether or not programs are
stored in program areas P0 through P9. The program area number
will be marked with a • when it contains a program.

(2) The ANGLE 0 in line 1 indicates the specified angle unit mode.
ANGLE 0 (DEG) is always specified directly after the unit is turned
ON. (ANGLE 1 = RAD, ANGLE 2 = GRAD)

(3) The 8KB in line 2 indicates the memory capacity. This value will be
different when RAM expansion packs (OR-8) are used.

RAM

OR-8
OR-8
OR-8
OR-8

Quantity
None

1
2

3

Memory capacity
8KB

16KB
24KB
32KB

(4) The 6871 B in line 2 indicates the number of remaining usable bytes.
This value will be different when RAM expansion packs (OR-8) are
used and when the specified address of the data area is changed.

151

CHAPTER 4 COMMAND REFERENCE

(5) When a data area is specified, the first address of the data area is dis­
played after the number of remaining bytes in line 2. This value also
changes according to the specified address of the data area. When
a data area is not specified, nothing is displayed.

(6) The Ready P0 in line 3 indicates that input is possible to program
area P0. P0 is always specified when the unit is turned ON.

dJr ANGLE,CLEAR

152

4-1 MANUAL COMMANDS

VERIFY

Function

Formats

Performs a parity check of programs or data stored on
a cassette tape.

VERIFY
VE RI FY "file name"

The VERIFY command checks if programs or data stored on a cassette
tape by the SAVE or PUT command are correctly stored.
■ This command has the following formats.
(1) VERIFY

Checks the first program found on cassette tape.
(2) VERIFY "file name"

Checks the program with the same file name on cassette tape.

■ You can check all programs stored by the 8 formats of SAVE
command (see SAVE) by using VERIFY orVERIFY "file name"
@® . In other words, it is not necessary to specify a format of SAVE
command.

■ If SAVE was not correctly performed, an RW error is displayed. If this
occurs, store the programs again.

The actual procedure is as follows.
Step 1: Tape Rewind - Return the tape on which programs are stored

by the SAVE command to the initial location by using the
tape counter.

Step 2: VERIFY Command Input - If the program has a file name,
enter VERIFY "file name"@® , and if it has no file name,
enter VERIFY@®.

Step 3: Press the PLAY button of the cassette tape recorder. When
check starts, either PF B, AF B, PF A, DF B or DF A (see page
150) is displayed. If a program or data was correctly stored,
Ready Pij-P9 is displayed and the cassette tape stops. If the
program or data was not correctly stored, an RW error is display­
ed and the cassette tape stops.

153

4-2 PROGRAM COMMANDS

ANGLE

Function

Format

Specifies the angle unit.

ANGLE numerical expression
(0�numerical expression< 3)

The angle unit is usually expressed as 30° and 60° and called DEGREE.
However, RADIAN and GRAD are also used in mathematics. The PB-770
can handle any of these units.

The ANGLE command is used to specify the following three angle units.
(1) DEGREE (Example) 4 5° , 90° Input range of x:

-5400° < X < 5400
°

(2) RADIAN (Example) 0.571', 271' Input range of x:
-3071'< X < 3071'

(3) GRAD (Example) 300, 1000 Input range of x:
-6000 < X < 6000

The relationship between these angle units is as follows.
360 DEG(= 360°) = 271' RAD= 400 GRAD

The angle unit is specified by the ANGLE command as follows.
ANGLE 0 - Specifies DEGREE
ANGLE 1 - Specifies RADIAN
ANGLE 2 - Specifies GRAD

The unit is always set to ANGLE 0 (DEGREE) when the power is turned
on.

This program displays

the value of SIN by
using 3 angle units.

All the results are 0.5.

10 REM *** ANGL_E ***

20 ANGLE 0:PRINT SIN30;

30 ANGLE 1: PRINT SIN(Pl/6);

40 ANGLE 2:PRINT SINC100/3)

50 END

154

4-2 PROGRAM COMMANDS

BEEP

Function

Formats

Generates a buzzer sound.

BEEP
BEEP 0
BEEP 1

BEEP command is provided in the PB-77O to generate a buzzer sound.
There are many ways to use a buzzer sound. For example, when a long
period of time is required for the execution of a program, execution
termination is indicated by the sounding of the buzzer accomplished by
inserting a BEEP command at the position of execution termination.
Also, the fun of a game is increased by using this command.

The BEEP command has the following three formats.
(1) BEEP

Generates a relatively low buzzer sound.

(2) BEEP 0
Generates the same sound as BEEP.

(3) BEEP 1
Generates a slightly higher buzzer sound.

100 REM*** BE.EP *.:+::*

110 IF I NKEY$=" '' THEN 110

120 IF INKEYi="0" THEl--l BEEP 0

130 IF I NKEY$-==" 1 " THEN BEEP 1

140 GOTO 110

This program was prepared to generate low buzzer sounds when [!] is
pressed and high buzzer sounds when [D is pressed.

155

CHAPTER 4 COMMAND REFERENCE

CHAIN

Function

Formats

Loads a specified program and executes it from the
first line.

CHAIN
CHAIN "file name"

When a CHAIN command appears during the execution of a program,
program execution is stopped at that point. Then a program with the file
name that was specified by the CHAIN command is loaded from a
cassette tape, and execution is performed from the beginning of the
program.
If there is no file name, the first program found which was stored by
SAVE or SAVE "file name" is loaded.
The CHAIN command has the following two formats.

(1) CHAIN
Loads first PF B found (program stored by SAVE or SAVE "file
name") and executes it.

(2) CHAIN "file name"
Loads PF B of specified file name and executes it.

■ Since the program is loaded in the presently specified program area,
the previous program is erased with NEW.

■ Programs stored by "SAVE ALL" and "SAVE, A" cannot be read in
with the CHAIN command.

■ If a password is attached to a loaded program, the password is also
read in.

■ Even when CHAIN is executed, variables are not cleared.

Input Lists 1-3 into program areas P1-P 3, then store them on a cassette
tape.

(List 1)

(List 2)

(List 3)

 Program that computes the area of a circle.
(File name: "PRO. 1 ")

 Program that computes the area of a triangle.
(File name: "PRO.2")

 Program that computes the area of a rectangle.
(File name: "PRO. 3")

156

4-2 PROGRAM COMMANDS

Also, input List 0 into P0 and execute it. List 0 is used to select List 1 -
List 3 using the CHAIN commands in lines 60-80, read it into the
PB-770, and then execute the computation.

List 0

10 REM CHAIN PR0.0

20 CLS : PR I NT "AREA CALCULATIONS''

30 PRINT '' !CIRCLE 2TRIANGLE 3RECTANGL

E"

40 PRINT "SELECT NO.

50 88$=INKEY$:IF UAL<S8$))3 THEN 50 E

LSE IF UAL(88$)(1 THEN 50

60 IF 88$=" 1" THEN CHAIN "PRO. 1"

70. IF 88$="2" THEN CHAIN "PRO. 2''

80 CHAIN "PR0.3"

List 1 List 3

10 REM PR0.3

20 INPUT ''LENGTH''; HH

30 INPUT ''WIDTH"; LL

40 S=HH:tLL

50 PRINT s

60 END

10 REM PRO.I

20 INPUT "RADIU5";RR

30 S=PiiRR"'2

40 PRINT s

50 END

List 2

10 REM PR0.2

20 INPUT "HEIGHT''; HH

30 INPUT ''BASE''; LL

40 S=HH*LL/2

50 PRINT s

60 END

157

CHAPTER 4 COMMAND REFERENCE

CLEAR

Function

Format

Clears all variables.
Clears all variables and creates a data area.

CLEAR [first address of data area]

The CLEAR command is used to clear all numerical variables and
character variables.
Numerical variables are cleared to 0 and character variables are cleared to
" " (null-string). Also, at the same time, registered variables in a program
are deleted, and the defined array variables are deleted.
Since the FOR nesting stack is cleared, a FOR-NEXT loop cannot be
continued.
When the first address of a data area is specified, an area is created to
which data can only be written using the POKE command and from
which data can only be read using the PEEK function. This method ,_ is
ideal for the storage of valuable data.

(1) Clearing variables
The program below is used to display data by totalizing the sum of data
and the number of data. However, if the program is executed again after
pressing the � key, the correct answer cannot be obtained since the
numerical values assigned to variables S and N at the first execution re­
main. Therefore, the CLEAR command is inserted between line 10 and
line 30 as shown in the program on the right so that a correct answer can
be obtained every time execution is performed.

10 PRINT "TOTAL"

30 INPUT "D=", D

40 S=S+D

50 N=N+l

60 PRINT "S(";N; ")=";S

70 GOTO 30

10 PRINT "TOTAL"

20 CLEAR

30 INPUT "D=", D

40 S=S+D

50 N=N+l

60 PRINT "S(";N; ")=";S

70 GOTO 30

158

4-2 PROGRAM COMMANDS

(2) Creating a data area
First of all, actually create a data area using the CLEAR command.

Assume that the above program is stored in program area P0. Perform
the following key operation:

CLEAR 3000�
This will create a data area from address 3000 (10).

Next, check the number of remaining bytes by entering:

SYSTEM�

CLEAR 3000 �

SYSTEM�
P .123456789 ANGLE 0

8KB 1 61 5B 3000

Ready P0

The resulting value should be 161 SB (bytes), but this value will differ if a
program is stored in other program area or if the RAM area has been
expanded.
Now enter:

CLEAR 5000 �
an'd execute the SYSTEM command again.
CLEAR 5000 �

SYSTEM�
P .123456789 ANGL E

8KB 3615B 5000

Ready P0

0

Confirm that the number of remaining bytes has increased. In this way
the number of bytes available for BASIC programming or variables is
increased by the amount that the specified size of the data area is de­
creased. Data area creation using the CLEAR command is required when
PEEK and POKE are used to read from and write to the specified add­
resses. Numerical variables and character variables are cleared by the
CLEAR command, but the contents of the data area remain unchanged.
Therefore, it is unnecessary to worry about the data area for normal
programming (when PEEK and POKE are not used). Data stored in a
data area created by specifying an address in the CLEAR command can
be input to/read from a cassette tape much more quickly than PUT /GET
operations using the LOAD, D, address and SAVE, D, address 1, address
2 commands.

159

CHAPTER 4 COMMAND REFERENCE

(3) Specifying the starting address
The allowable range for the starting address of the data area is -32769 <
address < 65536. However, when the starting address is within the sys­
tem area (&H0000 through &H0528), and, when a program is stored in
the computer, the address must be larger than the last address of the
program. The value specified for the starting address of the data area and
the actually specified address have the following relationship.

Specified address

(hexadecimal)
0000H

Value specified for the starting address
(decimal)

2000H

4000H

6000H

0, 32768, -32768

8192, 40960, -24576

16384, 49152, -16384

24576, 57344, -8192

7FFFH 32767, 65535, -1

NOTE: 0 through 1320, 32768 through 34088, -32768 through
-31448 are within the system area. Therefore, they cannot be
specified (an OM error will occur).

The usable address ranges for the various RAM capacities are shown
below. It is not necessary to create data areas for programs that do not
use PEEK and POKE. Therefore, when a data area has been created,
release it using a CLEAR command as shown in the table below.

8KB

16KB

24KB

32KB

0-8191

0-16383

0-24575

0-32767

CLEAR 8192

CLEAR 16384

CLEAR 24576

CLEAR 32767

In this way the program area and variable area can be used to their fullest
extent. Using a CLEAR command in which the data area address is not
specified does not change the size of the data area.

* If a data area specification is released using NEW ALL�, the address
number is not displayed.

g- SYSTEM, PEEK, POKE, NEW ALL

160

CLS

Function

Format

4-2 PROGRAM COMMANDS

Clears all displays and moves the cursor to the home
position (top left corner).

CLS

The CLS command is used to clear the screen and to move the cursor to
the home position at the top left corner.
It is used to clear the screen for a graphic display.
(1) When this command is manually executed, the cursor is displayed at

the (0, 1) position.
(2) When this command is executed during program execution, the

cursor is displayed at the (0,0) position.

5 ANGLE 0

10 CLS

20 FOR 1=0 TO 360 STEP 12

30 DRAW(SINI*15+80,COSI*15+15)

40 NEXT I

50 END

This program is used to display the following pattern.

When a pattern is drawn on the screen as shown above, the screen must
be cleared before drawing starts. Therefore, the CLS command is used at
the beginning of the program.

161

CHAPTER 4 COMMAND REFERENCE

DIM

Function

Format

Declares an array.

DIM array variable name (subscript)[, array variable
name (subscript)]

The DIM command declares an array of the specified name in the memory
area. Variables assigned by DIM (called array variables) include single­
precision numerical arrays, half-precision numerical arrays and string
arrays.
The general format of DIM can be indicated as follows.

DIM array variable name (subscript [, subscript]) [, array
variable name (...... .
(Maximum value of subscript : 255)

Examples of declaration statements for various arrays are provided as
follows.

DIM A (5)

DIM A (2, 3)

DIM A! (5)

DIM A! (2, 3)

DIM A$ (5)*20

One-dimensional single-precision
numerical array

Two-dimensional single-precision
numerical array

One-dimensional half-precision
numerical array

Two-dimensional half-precision
numerical array

One-dimensional string array

Two-dimensional string array DIM A$(2, 3)*20

DIM array variable
name (I)

DIM array variable
name (I, J)

DIM array variable
name ! (I)

DIM array variable
name ! (I, J)

DIM array variable
name$(!)* N

DIM array variable
name$(1,J)*N
* N can be omitted

162

4-2 PROGRAM COMMANDS

I, J and N are real numbers or numerical expressions with the ranges of
0 �I< 256, 0 � J < 256 and 0 � N < 80, in which the fractional part
of numerical value is discarded.
An array variable name is one character from among the capital alpha­
betical characters from A to Z.
The maximum dimensional value is 2, which means one-dimensional
arrays and two-dimensional arrays can be specified.
A half-precision numerical array can be specified by placing " ! " just
after the array variable name, and a string array can be specified by
placing " $ "just after the array variable name.
A string array, in which a character string of "N" length can be assigned,
is declared by placing " * N ". However, if " * N" is omitted, N= l 6 (i.e.
an array in which 16 character long strings can be stored}.

Enter the following program and run it.

10 CLEAR

20 DIM A(2,3), 8(2,3)

100 END

An operational expression may or may not be written between line 20
and line 100.
When characters such as Ready P0 appear after program execution,
check the array variable list as follows.

LIST V �

A() B()

Ready P0

The array variable name assigned by DIM can be confirmed using

LIST V �

Let's check the content of each array variable by adding the following
list to the program mentioned above. An array variable must be declared
by DIM before it is used.

163

CHAPTER 4 COMMAND REFERENCE

30 FOR I =0 TO 2

40 FOR J = 0 TO 3

50 PRINT A(I, J);B(I, J);

60 NEXT J : NEXT I

When you run the program after adding lines 30 to 60, the following
is displayed.

■ Execution Example

(2) 0 (2) 0 0 (2) (2) (2) 0 0

(2) 0 0 (2) (2) (2) 0 (2) (2) 0

0 (2) 0 0

Ready P0

Here, the contents of 24 array variables, A (0, 0), B (0, Cb) through
A (2, 3), B (2, 3), are displayed as "0".
It is important to note that the contents of all the arrays become "0"
when the DIM command is executed.
While the contents of the numerical arrays mentioned above are 0, when
string arrays are declared their contents become null-strings in which
nothing is displayed. Null-string means that a character string is empty.
The difference between space-strings and null-strings should be noted. A
space-string is a string that has one space (A$ (I)=".___..'') and a null-string
is a string that is empty (A$(1)=" ").

* Rearrange (sort) program (one-dimensional numerical array).

10 CLEAR

20 DIM D(5)

30 FOR I=l TO 5

40 PRINT "DATA";I:" ="::INPUT D(I)

50 NEXT I

60 REM SORT

?0 F=0

80 FOR I=l TO 4

164

4-2 PROGRAM COMMANDS

90 IF DCI)<DCI+l) THEN X=DCI):D(I)=D(
I+l):DCI+l)=X:F=l

100 NEXT I

110 IF F=l THEN 70
120 REM RESULT

130 FOR I=l TO 5
140 PRINT DCI);
150 NEXT I

160 END

This program enters 5 numerical data and arranges these data in a se­
quence with the largest value first.
An array is provided from D(0) through D(S) by the DIM command in
line 20, but only D(1) through D(S) are used in this program.
Lines 6e> to 11 e> contain the sort program while lines 120 to 150 contain
the program which displays the sorted result with the largest value first.
It is convenient to use array variables by combining them with the
FOR-NEXT command as shown in the sample program.

* Vertical and horizontal totalization (Two-dimensional numerical
array)

5 CLEAR

10 DIM AC3,3),X(3),Y(3)
20 FOR I=l TO 3

30 FOR J=l TO 3

40 PR I NT
11 < 11

; I;
11

,
11 ; J; 11) 11 ; ,, = 11

50 INPUT AC I, J)
60 NEXT J:NEXT I

70 REM SUBTOTAL

165

CHAPTER 4 COMMAND REFERENCE

80 FOR I=l TO 3

90 FOR J=l TO 3

100 X CI) =X CI) +AC I , J)

110 Y C J) =Y C J) +AC I , J)

120 NEXT J:NEXT I

130 REM RESULT

140 FOR I=l TO 3

150 PRINT "XC"; I; ")=";XCI)

160 PRINT "YC"; I; ")=";YCI)

170 FOR K=l TO 500:NEXT K

180 NEXT I

190 END

This program assigns the data in Table 1 to a two-dimensional array as
shown in Table 2 in order to obtain vertical and horizontal subtotals
X(1), X(2), X(3), and Y(1), Y(2), Y(3).

Table 1 Table 2

14 9 21 X (1) A (1, 1) A (1, 2) A (1, 3) X (1)

35 4 53 X (2) A (2, 1) A (2, 2) A (2, 3) X (2)

6 15 11 X (3) A (3, 1) A (3, 2) A (3, 3) X (3)

y (1) y (2) y (3) y (1) y (2) y (3)

Lines 80 to 120 obtain a subtotal while lines 130 to 180 display the
obtained values.

f:1F CLEAR, NEW ALL, ERASE, LIST V

166

4-2 PROGRAM COMMANDS

DRAW/DRAWC

Functions

Formats

DRAW: Draws a dot.
DRAWC: Clears a dot.

DRAW (X1, Y1) [-(X2, Y2)]
DRAWC (X1, Y1) [-(X2, Y2)]

The DRAW command draws dots or lines on the scre·en while DRAWC
clears them.
Since not only characters but dots and lines can be displayed on the
screen, many kinds of graphs, etc. can be made with this command.

The ranges of coo rd in ates that can be specified by DRAW (X, Y) or
DRAWC (X, Y) are as follows.

-255.5 < X < 255.5 -255.5 < Y < 255.5

Since the range of the screen dot coordinates are 0 � X � 159, and
0 � Y � 31, the virtual screen shown below can be considered.

(-255.55, -255.5)

Coordinates that can
be specified.

(255.5, -255.5)

Screen of the PB-770

(0,0) (159, 0)

(0, 31) (159, 31)

(-255.5, 255.5) (255.5, 255.5)

In this figure, is equivalent to the screen of the PB-77O.
The top left corner of the screen is the origin (0, 0).

167

CHAPTER 4 COMMAND REFERENCE

DRAW and DRAWC are used as follows.

DRAW (X1, Y1)

DRAWC (X1, Y1)

DRAW (X1, Y1)-(X2, Y2)

Draws a dot at coordinate (X1, Y 1).

Erases the dot at coordinate (X1, Y1).

Draws a line from coordinate
(X 1 , Yi) to (X 2 , Y 2) •

DRAWC (X1, Y1)-(X2, Y2) Erases the line from coordinate
(X1, Y 1) to (X2, Y 2)

X and Y mentioned above are numerical values, variable names, and
numerical expressions with the following range.

-255.5 < X < 255.5 -255.5 < Y < 255.5

They are shown on the actual screen rounded off to integers.
The following program draws a rectangle on the screen.

1 (2) REM DRAW

20 CLS

3(2) DRAW(10,10)-(1 <D,20)-(150,20)-(150,10)-(10,10)

40 END

A figure can be drawn by providing continuous coordinates with "-"
as shown in the program above.

* A program that displays a character magnified two times.

10 CLEAR :DIM AC7,7):CLS

20 K$=INKEY$

30 IF K$="" THEN 20

40 LOCATE 19,0:PRINT K$

50 FOR I=0 TO 7

60 FOR J=0 TO 7

70 ACI,J)=POINTCI+152,J)

80 NEXT J:NEXT I

90 FOR 1=0 TO 7
168

4-2 PROGRAM COMMANDS

100 FOR J=0 TO 7

110 IF A<I, J)()l THEN 160

120 DRAWC2il+80,2iJ+9)

130 DRAWC2il+81,2iJ+9)

140 DRAWC2il+80,2iJ+10)

i50 DRAWC2*I+81,2iJ+l0)

160 NEXT J:NEXT I
170 LOCATE 0, 1

180 END

This program uses INKEY$ to enter one character, and first displays the
character at the position which is specified by LOCATE (19,0) as shown
in the figure below.
This character is displayed using dots in a square area with a diagonal
line formed by (152,0)-(159,7) in which the dots that are displayed and
cleared are checked with the POINT function. Then values 0 and 1 are
assigned to array variable A (I, J).
Using this array variable as data, the character that is magnified is dis­
played in a square area with a diagonal line formed by (80,9)-(95,24).

(80,9)

-- POINT

169

(95,24)

(152,0)

(159,7)

CHAPTER 4 COMMAND REFERENCE

END

Function Terminates execution of a program.

Format END

The END command terminates execution of a program. The nesting
stack (control of FOR-NEXT loop and GOSUB) is cleared by the execu­
tion of an END command. As many END statements as desired can be
placed anywhere in a program.
The END command placed at the end of a program can be omitted.

500 FOR 1 = 0 T0 1 000

510 K$=INKEY$

520 IF K$= "A" THEN 1000

530 IF K$= 11 8 11 THEN 2000

540 IF K$= "C" THEN 3000

550 IF K$="0" THEN ENO

560 NEXT I

570 END

This program is used as part of a menu program.
After "A", "B" or "C" is entered, execution jumps to line 1000, 2000,
or 3000 respectively.
When "D" is entered, program execution is immediately terminated.
However, when key entry is performed with a key other than "A"~"D",
or when no key entry is performed, execution is automatically terminated
after a certain period of time.

g- STOP

170

4-2 PROGRAM COMMANDS

ERASE

Function

Format

Releases registered variables and array variables.

ERASE variable name [, variable name]

An ERASE command can release registered variables and array variables
that can be confirmed by LIST V.
Specification of a variable name for release is performed as follows.

Variable names
displayed by a LIST V: AB, AB$, A (), A! (), A$ ()

ERASE AB, AB$, A, A!, A$

The nesting stack is cleared by execution of the ERASE command, so
this command should never be used within a FOR-NEXT loop. When an
unregistered variable name is specified, execution proceeds to the next
operation.

g- DIM, LIST V

171

CHAPTER 4 COMMAND REFERENCE

Function

Formats

Repeats the execution from FOR to NEXT for a
specified number of times.

FOR numerical variable = i TO i [STEP k]
I

NEXT numerical variable (same variable as that of the

i : Initial value
j : Final value
k: Increment

FOR statement)

The FOR-NEXT command repeatedly executes each statement between
the FOR command and the NEXT command for the specified number
of times.

This command has some restrictions as follows.
(1) Variables must be numerical variables.
(2) STEP k can be omitted. In this case +1 (STEP 1) is set as the

increment.
(3) A variable or a numerical expression can be used for the initial

value i, final valuej, and increment k.
(4) If k > 0 and i > �. FOR-NEXT execution !S performed only once.
(5) If k < 0 and i < J, FOR-NEXT execution 1s p_erformed only once.
(6) When a FOR-NEXT execution is performed and execution proceeds

to the following line, the control variable becomes the value of
i + nk which is larger than j (n = integer).

(7) Nesting of FOR-NEXT loop can be performed up to 6 levels.

FOR A= TO
FOR B= TO
FOR C= TO
FOR D= TO
FOR E= TO
FOR F= TO

processing

NEXT F
NEXT E
NEXT D
NEXT C
NEXT B
NEXT A

172

4·2 PROGRAM COMMANDS

(8) If the interval of a FOR-NEXT loop is crossed, an error (FO error)
occurs.

FOR A=

FOR B=

NEXT A

NEXT B

TO

TO

FO error occurs.

(9) When FOR is not executed and NEXT appears, an error (FO
error) occurs.

(10) The variable for the NEXT command cannot be omitted.
(11) If ERASE or CLEAR is executed, an FO error occurs for the follow­

ing NEXT statement because the FOR-NEXT nesting stack is cleared.
(12) The values of the control variables are cleared before the first pass

of all loops. Therefore, the same control variable can be used for
separate (non-nested) loops within the same program without clear­
ing the control variable each time.

(13) A jump into a loop using GOTO or GOSUB statement, etc. cannot
be performed.

The following program is used to demonstrate the change of the variable
depending on the value of the initial value, final value, and increment.

10 INPUT "FOR l=11 ,l, 11TO",J,"STEP 11 ,K

20 PRINT ""FOR I= 11 ;l; 11T0 11 ;J; 11STEP11 ;K

30 FOR A=I TO J STEP K

40 PRINT 11 VARIABLE:A=1
1
;A

50 FOR X= 1 TO 100:NEXT X

60 NEXT A

70 PRINT : GOTO 1 0

173

CHAPTER 4 COMMAND REFERENCE

Several execution examples are provided below.
In the following program, the FOR-NEXT loop has two levels.

1 Cl) CLEAR

2(l) DIM A(9, 9)

3(l) FOR I= 1 TO 9

4(2) FOR J= 1 TO 9

5CD A(l,J)=l*J J

60 NEXT J

70 NEXT I

In this example, multiplication is performed and the result is assigned to
array variable A(I, J) between the two FOR-NEXT loops.
Since execution is performed 9 times by the internal FOR-NEXT
loop and execution is performed 9 times by the external FOR-NEXT
loop, a total of 9 x 9 operations are performed.
It should be noted in the above example that the internal loop (J) is
totally enclosed by the external loop (I). This is required whenever loops
are nested. (See item 7 on page 172.)
This also applies to the levels from 3 to 6.

The following program changes the operation by jumping from the
loop depending on the arithmetic result of the FOR-NEXT statement.

1(2) CLEAR

20 FOR I= 1 TO 100

30 X=X+I

44(2) IF X >=1000 THEN 100

50 NEXT I

60 END

100 PRINT I; X

110 END

This program performs the addition of 1 + 2 + 3 , and when the
result exceeds 1000, it jumps to line 100 and displays the value of the
variable at that time along with the addition result.

174

I

4-2 PROGRAM COMMANDS

Jumping out of a loop using an IF-THEN command can be used.
Jumping out of a loop once using a GOSUB command and returning
with a RETURN command to continue execution can also be used.

The following program provides an example of when there is nothing
to execute between FOR-NEXT.

10 LOCATE 8, 2 : PRINT 11 HIT ! 11 ;

20 FOR 1=0 TO 50

30 NEXT I

40 CLS

50 FOR I= 0 TO 50

60 NEXT I

70 GOTO 1 0

There is no statement to be processed between the FOR-NEXT loop in
lines 20 and 30 and lines 50 and 60. However, the FOR-NEXT command
is executed the specified numbeT of times even in this case.
This command which seems to be nonsense is often used to kill time and
is called a "wait loop".
In this program, the characters "HIT!" are repeatedly displayed for a cer­
tain period of time, erased for a certain period of time, and displayed
again for a certain period of time.
As the final value of the variable increases, the waiting time becomes
longer.

* A program that provides a display increasing the number of " * " by
one on each successive line.

10 CLS

20 N=l

30 FOR I=l TO N

40 PRINT
If* II;

50 NEXT I

60 PRINT

70 N=N+l

80 IF N>=20 THEN END

175

ELSE 30

CHAPTER 4 COMMAND REFERENCE

This program increases the final value of the FOR-NEXT command
by one each time and increases the number of "*" displayed by one
each time. The execution example is as follows.

-- IF~THEN~ELSE

*

**

::IC**

**::U

*:le::!:**

* :le ::t: ***

176

GET

Function

Formats

4-2 PROGRAM COMMANDS

Reads data stored on a cassette tape to a variable.

GET variable [, variable]
GET "file name" variable [, variable]

The GET command is used to read data stored on a cassette tape by the
PUT command to a variable.
The file name can be omitted as shown in the above format, but, in that
case the first file that appears on the cassette tape (MT) is read. The data
that are read can be sequentially assigned to different variables by punc-
tuating the variables with commas.
However, when data is assigned to a numerical variable, the space at
the beginning of the data is ignored.

The following program stores the values of variables A, B, C and D
with the file name "TEST" on a cassette tape.

10 REM PUT MT

20 A=10:8=20:C=30:D=40

30 PUT "TEST" A, 8, C, D

40 END

The following example program uses a GET command to read data
stored on a cassette tape with the file name "TEST".

10 REM GET MT

20 GET "TEST" E, F, G, H

30 PRINT E; F; G; H

40 END

177

CHAPTER 4 COMMAND REFERENCE

In this example, the data A, B, C, and Dare read into the variables E, F,
G, and H. An important item is that data are stored on cassette tape in
an A, B, C, D sequence.
Although data are read in an A, B, C, D sequence during cassette tape

playback, the data of A is assigned to E, and data of B is assigned to
F, sequentially.
If GET is executed with variables that exceed the variable data stored on
a cassette tape, an error (DA error) occurs because of data shortage.

* A program to store a person's name and data on cassette tape, and
to read and display a person's data when a name is entered. (Number
of characters of name and data are both limited to 16 or less.)

10 CLEAR

20 DIM N$Cl0),DSC10)

30 INPUT "PUT:O GET:I END:E";M$

40 IF M$="0" THEN GOSUB 100

50 IF M$="I" THEN GOSUB 300

60 IF M$="E" THEN END

70 GOTO 30

100 1=0

110 INPUT "NAME:"; N$(I)

120 PUT N$(I)

130 IF N$(I)="0" THEN 180

140 INPUT "DATA:";D$(1)

150 PUT DS(I)

160 I=I+l

170 IF 1(10 THEN 110

180 RETURN

300 J=0

310 INPUT "NAME:";A$

178

320

330

340

350

360

370

380

GET N$(J)

IF N$(J)="0" THEN PRINT

":GOTO 380

GET D$C J)

IF A$< >N$(J) THEN 370

PRINT A$;"=";D$(J):GOTO

J=J+l:GOTO 320

RETURN

4-2 PROGRAM COMMANDS

"NOT FOUND

380

This program consists of two subroutines.
Lines 1 Q)Q) to 18'1) provide a subroutine to store data on a cassette tape,
while lines 30'1) to 380 provide a subroutine to search for and read data
from a cassette tape.
A name is entered in array variable N$ (I), and data is entered in D$ (I).
Then storing and reading are performed with these two variables as a
pair.
When "O" is entered for the menu in line 30, the storing subroutine
from line 100 is executed with the input of a name and data continuous­
ly performed. Up to 11 data inputs can be performed. However, since
it is necessary to attach "Q)" to the end of the last name (to indicate data
end), up to 1Q) data inputs can actually be performed.
When "I" is entered for the menu in line 3'1) to search for the name of
a person, then the name and data are read from a cassette tape.
After the name is found, the name and data are displayed and the
program returns to the menu in line 30.
Enter "E" for the menu to terminate the program.

g- PUT,SAVE

179

CHAPTER 4 COMMAND REFERENCE

GOSUB/RETURN

Function

Formats

Causes a jump to a subroutine and a return to a
main program.

GOSUB line number
GOSUB PROG n

RETURN

1 � line number< 10QH'.l0
0�n < 10

(n indicates the program area
No.)

The GOSUB command causes a jump to a subroutine of a line which
is specified by a variable or a numerical expression. The RETURN com­
mand causes a return from the subroutine to the main program.
Example

GOSUB 200

GOSUB N

GOSUB N *5

GOSUB PROG 4

GOSUB PROGL

GOSUB PROG L/10

The PB-770 allows a jump to a subroutine and a return to a main pro­
gram in other program areas, as well as a jump to a subroutine in the
same program area as shown by the above formats.

In the following program, the execution flow is shown by changing the
layout.

10 CLS Subroutine (1)

20 Z$=INKEY$

Main 30 IF Z$=""THEN 20

100 A=ASC(Z$)
110 RETURN

Program
40 GOSUB 100

Subroutine (2)

50 GOSUB 200

60 END

200 LOCATE 0,2
210 FOR 1=0 TO 19

220 PRINT CHR$(A + I) ;
230 NEXT I
240 RETURN

180

4-2 PROGRAM COMMANDS

Lines 10 to 60 provide the main program, lines 100 and 110 provide one
subroutine, while lines 200 to 240 provide another subroutine.
When the RETURN command is executed as shown by the arrows,
a return is made to the statement following the GOSUB command and
execution of the main program continues.

This program can be rewritten as follows by changing its format slightly.

Subroutine (2) 10 CLS

20 Z$=1NKEY$

30 IF Z$=" 11 THEN 20

40 GOSUB 100

50 END

Subroutine (1)

100 A=ASC(Z$)

110 GOSUB 200

120 RETURN

200 LOCATE 0, 2

210 FOR 1=0 TO 19

220 PRINT CHR$(A+I);

230 NEXT I

240 RETURN

Although the contents of this program is exactly the same as the pre­
viously mentioned program, this program has a double structure in which
subroutine (2) is included in subroutine (1).
Up to 12 nesting levels can be used with the GOSUB/RETURN com­
mands.
Precautions should be taken concerning the following items when
GOSUB/RETURN commands are used.

(1) One subroutine must have at least one RETURN command, and can
have as many as desired.

(2) If the line specified by a GOSUB command does not exist, an error
(UL error) will occur.

(3) When GOSUB PROG n is executed, if a program is not written in
program area n, an error (UL error) will occur in the present program
area.

(4) When there is no GOSUB command for a RETURN command, an
error (GS error) will occur.

181

CHAPTER 4 COMMAND REFERENCE

(5) Up to 12 GOSUB nesting levels can be used. {If there are 13 levels or
more, an error (NO error) will occur.)

(6) When a fraction is included in a line number or program area number
specified with GOSUB, execution is performed with the fraction
discarded.

* Slot machine game program.

10 CLS

20 GOSUB 200

30 GOSUB 300

40 GOSUB 400

50 LOCATE 3,0

60 PRINT "POINT";N

70 LOCATE 0,0:END

200 X=INT(10*RND)

210 Y=INT<10*RND)

220 Z=INT<10*RND)

230 RETURN

300 LOCATE 6,2

310 PRINT X:"
If; y; !f II; Z;

320 RETURN

400 IF X=Y THEN IF Y=Z THEN N=100:RETU

RN

410 IF X=Y THEN N=40:RETURN

420 IF Y=Z THEN N=30:RETURN

430 IF X=Z THEN N=20:RETURN

440 N=0

450 RETURN

182

4-2 PROGRAM COMMANDS

This program displays 3 numerals. If all of the 3 numerals are identical,
H?0 points are given, and if 2 numerals are identical, 40, 30 or 20 points
are given depending on their locations.
If all 3 numerals are different, 0 points are displayed.
Lines 200 to 230 provide the subroutine that generates the 3 numerals
with the RND function, while lines 300 to 320 provide a subroutine that
displays the numerals at the center of the screen, and lines 400 to 450
provide a subroutine that checks the number of points given.
Lines 10 to 70 provide the main program which simply controls each
subroutine and displays the number of points given.

l:D9 GOTO

183

CHAPTER 4 COMMAND REFERENCE

GOTO

Function

Formats

Causes an unconditional jump to a specified line.

GOTO line number

GOTOPROGn

1 � line number< 10000

0�n<10
n : Indicates the program

area No.

The GOTO command unconditionally jumps to a specified line number
or to the beginning of a program in another program area specified by a
variable or a numerical expression.
If the specified line number does not exist, or there is no program in the
specified program area, an error (UL error) will occur.
If a fraction is included in a specified line number or in a specified pro­
gram area number, the fraction is discarded when execution is performed.

Example

GOTO 500

GOTON

GOTO N*S

GOTO PROG 4

GOTO PROG N

GOTO PROG N/10

* Simplified Digital Clock Program.

10 INPUT II H=" ; H, "M=" ; M, 1
1 S= 11 ; S

20 CLS

30 IF H<10 THEN LOCATE 8,0:PRINT

";:GOTO 50

40 LOCATE 7,0:PRINT H: 11 :";

50 IF M<10 THEN LOCATE 12,0:PRINT

184

H• ".
.

.

M: II

: "; : GOTO 70

.•

60 LOCATE 11,0:PRINT
M. ti II •

. ,

4-2 PROGRAM COMMANDS

70 IF S<10 THEN LOCATE 16,0:PRINT S;"

80

'30

100

110

120

200

210

220

300

310

320

: II; :
GOTO 90

LOCATE 15,0:PRINT S;

FOR 1=2 TO i20:NEXT I
S=S+l

IF S>=60 THEN 200

GOTO 70

5=0:M=M+l

IF M>=60 THEN 300

GOTO 50

M=0:H=H+l

IF H>=24 THEN H=0

GOTO 30

When you run this program, H (hour), M (minutes), and S (seconds) are
requested. After the present time is entered and the � key is pressed,
time is continually displayed up to seconds.
Since the internal clock of the microcomputer is not used for this
program, it does not show the exact time, but indicates the approximate
time.
If it gains, adjust by increasing the final value of the FOR command in
line 90, and if it loses, adjust by decreasing the final value.
Many GOTO commands are used in this program.
The program creates an infinite loop using GOTO commands in lines
120, 220, and 320.

g- GOSUB/RETURN, IF-THEN-ELSE

185

CHAPTER 4 COMMAND REFERENCE

IF,_, THEN,_,ELSE

Function

Formats

on
Executes

the
the

condition
contents

after IF.
after THEN or ELSE depending

IF conditi
expression

?nal THEN {line
command

number} ELSE {line
command

number}
umerical eA n xpression cannot be used as a line number.

co
The

mmand
IF-THEN

performs
command

an unconditional
performs a

jump.
conditional jump while a GOTO

not

When
cuted,

an

the
and
ELSE

when
conditional

statement,
it is false,

the

expression
the
next line

ELSE
is

is

true,
stat
executed.

the
ement is

THEN
executed.

statement
If

is
there

exe­
is

A line number that represents a branch destination, or a command state­
ment can
Multistatements

be inserted
can

in
be

THEN
performed

and
in

ELSE
THEN

statements.
or ELSE statements using

colons as shown below.

IF conditional expression THEN ELSE

THEN statement ELSE statement

An IF statement
.

can be inserted in the THEN or ELSE statement as
shown below
IF

ELSE
conditional

ELSE
expression (1) THEN IF conditional expression (2) THEN

Executes when conditional
expression (1) is true and
when conditional expression
(2) is false.

Executes when conditional
expression (1) is false.

Executes when conditional
expressions (1) and (2) are
both true.

(1) 10 INPUT "A=";A,

These
Examples

programs
of IF ~

check
THEN

whether
~

a
ELSE

triangle
statement

can be
usage

made
are

or not
shown

after
below.

thre
sides are

entered.

e

11 8= 11 ;8, "C=";C

20 IF A+ B>C THEN 40

30

40

50

60

GOTO 50

IF ABS(A-B)<C THEN 60

PRINT

PRINT

"NOT TRI 11 : GOTO 1 0

"TRI": GOTO 10

186

(2)

(3)

4-2 PROGRAM COMMANDS

10 INPUT "A=";A, 118= 11 ;8, "C=";C

20 IF A+B>C THEN IF ABS(A-B)<C THEN 40

30 PRINT "NOT TRI": GOTO 10

40 PRINT "TRI": GOTO 10

10 INPUT "A=";A, "B=";B, "C=";C

20 IF A+B>C THEN IF ABS(A-B)<C THEN 40

30 PRINT "NOT TRI": GOTO 10

40 IF A=B THEN IF B=C THEN PRINT "E.TRI": GOT

0 10 ELSE PRINT "I.TRI" : GOTO 10

50 IF B=C THEN PRINT "I.TRI": GOTO 10

60 IF A=C THEN PRINT "I.TRI": GOTO 10 ELSE

PRINT "TRI": GOTO 10

Example programs (1) and (2) check whether a triangle (TRlangle) is
formed or not (NOT TRI angle) when three sides A, B, and C are entered.
In example(l), two triangle conditions (A+B>C, IA-Bl<C) are checked
in separate lines (line 20 and line 4el), while in example (2), they are
checked in one line (line 20).
Also, in example(3), the program checks whether the values form an equi­
lateral triangle (Equilateral TRlangle) or an isosceles triangle (Isosceles
TRlangle), as well as whether they form a triangle (TRI) or not (NOT
TRI).
In example (3), whether a triangle (TRI) is formed or not is checked first
in line 2el. If a triangle is not formed, "NOT TRI II is displayed and a
return is made to line 10.
If a triangle is formed, whether the three sides are equal or not is check­
ed in line 40. If the three sides are equal, "E.TRl11 is displayed. If two
sides are equal, "I .TRI II is displayed, and if all three sides are not equal,
"TRI II is simply displayed in lines 40 to 60, and a return is made to line
10.

187

CHAPTER 4 COMMAND REFERENCE

* Program to draw a pattern on the screen with dots.

10 CLS

20 X=0:Y=0:N=l:M=l

30 DRAW<X,Y)

40 X=X+N:Y=Y+M

50 IF X>=158 THEN N=-1

60 IF Y>=31 THEN M=-t

70 IF X<=0 THEN N=t

80 IF Y<=0 THEN M=l

90 IF X=1 THEN IF Y=31 THEN BEEP t:END

i00 GOTO 30

This program determines whether or not the value of the dot coordinates
(X, Y) on the screen is within the screen limitation by the IF-THEN
command (lines 50 to 80) to control whether the values of the X, Y
coordinates are increased or decreased.
When the values of X and Y become X = 1, Y = 31 (line 90), a beep
sound is generated, and the program is terminated.
The next figure shows the execution result.

■ Execution Example

188

4-2 PROGRAM COMMANDS

INPUT

Function

Formats

Requests data entry (numerical value, character) from
the keyboard to a variable.

INPUT variable [, variable]
INPUT "prompt", variable [, "prompt", variable]
INPUT "prompt"; variable [, "prompt"; variable]

The INPUT command is used to enter data from the keyboard to a
variable. The basic formats of the INPUT statement are as follows.

Example 1
Example 2
Example 3
Example 4
Example 5

INPUT A
INPUT X, Y, Z
INPUT "AGE" A
INPUT "NAME"; A$
INPUT "X=; X, "Y="; Y

When the INPUT command is executed, the PB-770 displays an input
request message and waits for data input.
For example, when example 1 is executed, " ? " is displayed as follows
and the cursor turns on and off at the right of " ? ". The data input
setup has been completed.

Display during INPUT
command execution.

Ready P0

? _ (Cursor)

Data input is performed by pressing keys. Always press the key or
� key at the end of data input. It should be noted that the key
functions the same as the� key during INPUT statement execution.

189

CHAPTER 4 COMMAND REFERENCE

■ Variables that can be used in an INPUT statement are as follows.

[Examples]

Numerical variable INPUT X
Character variable INPUT X$ (Up to 7 characters can be

entered.)
Registered variable INPUT XY

INPUT XY$ (Up to 16 characters can be
entered.)

Array variable INPUT X! (i), Y! (i, j)
Half-precision numerical array
INPUT X (i), Y (i, j)
Single-precision numerical array
INPUT A$ (i), INPUT A$ (i, j)
String array

(1) Numerical value input

Let's check INPUT statement usage and functions by using a simple
program.

10 INPUTA

20 PRINT A

30 GOTO 10

Input command. Provides data input to
variable A.
Output command. Displays the contents
of variable A.
Jump command. Moves program execu­
tion to line Hl.

After inputting this program, enter RUN� to execute it."?" is display­
ed. Now, enter 3.6�. If the entry is performed correctly, the same
numerals are displayed again by the PRINT statement as follows.

!ill) RUN � 3.6 � RUN

?3.6

3.6

?

190

4-2 PROGRAM COMMANDS

A value can be entered by inputting a calculation expression that results
in the value, but this is limited to INPUT statements using numerical
variables.
Let's confirm this using the previous program.

[ill) RUN� 100-20/5 §[) RUN
?100-20/5

96
?-

(2) Character input
Perform character input by changing the program of (1). The new pro­
gram is as follows.

10 INPUT A$

20 PRINT A$

30 GOTO 10

When character input is performed, a character variable is used as shown
above. When you execute this program, input is requested by the dis­
play of " ? " the same as for numerical value input. When entering th�
character string ABC, the display becomes as follows.

[ill) RUN� ABC §[) RUN
?ABC
ABC
?-

When the numerical value 123 is entered, 123 is displayed. However,
it should be noted that this 123 is a character string and not a numerical
value.
When data is input to a character variable, it is unnecessary to enclose
the character string with " ". If " " is used, the quotation marks
would also be entered as character data.

191

CHAPTER 4 COMMAND REFERENCE

■ Data that can be input to each variable by an INPUT statement.

A. Numerical variable
a. ± 1 x 10-99 to ±9.99999999999 x 1099 and 0
b. Operational expression for a numerical value (Example: 200 x

(5 + 2))
c. Numerical variable from A to Z (Fixed variable)
d. Registered variable
e. Array variable

B. Character variable
a. Fixed character variable

b. Registered character variable

c. Array variable

Up to 7 characters and sym­
bols.
Up to 16 characters and sym­
bols.
Up to 79 characters and sym­
bols.

(3) Multiple variable input
Multiple variables can be used in an INPUT statement. (Multiple INPUT
statements can be arranged in one statement as shown below.)

10 INPUT X

20 INPUT Y

30 INPUT Z

10 INPUT X, Y, Z

Punctuate variables

with commas.

When you execute this INPUT statement, " ? " is displayed at first to
request the input of the value of X. After the value of X is entered, the
values of Y and Z are requested in turn. After the value of Z is entered,
this INPUT statement is terminated.

192

4-2 PROGRAM COMMANDS

Variables, such as numerical variables, character variables, etc. can be
used with all combinations and sequences in this kind of INPUT state­
ment as shown below.

10 INPUT A$, X

However, a " , " (comma) must be used for punctuation between vari­
ables.

(4) INPUT statement that displays a message
If a character string enclosed with " " is inserted between INPUT and a
variable, the character string is displayed as it is. This is called a prompt.
Incorrect input can be reduced by clarifying data for input with this
message.
Input the following INPUT statement and execute it.

10 INPUT 1
1 AGE 11 ; A

Then the following is displayed.

I@ RUN � RUN
AGE?-

193

CHAPTER 4 COMMAND REFERENCE

Next, this INPUT statement is changed as follows.

10 INPUT "AGE", A

When you run this program, the display is as follows.

(@RUN� RUN

AGE-

When " ? " (input request display) should appear after a message, a" ; "
is used for punctuation between the message and the variable.
This INPUT statement can be changed for input of two or more variables.

10 INPUT 11 HEIGHT= 11 ;X, 11 WEIGHT= 11 ;Y

In effect, this combines the following two INPUT statements into one
INPUT statement.

10 INPUT "HEIGHT=";X

20 INPUT 1
1 WEIGHT= 11 ;Y

10 INPUT II HEIGHT =11 ;

X, II WEIGHT= II; y

When you run this program, the display is as follows.

I@ RUN� RUN
HEIGHT=?175
WEIGHT=?65_

■ Number of characters in character string used for a message

The maximum number of characters for a message is 79 including the
line number and INPUT command.

194

4-2 PROGRAM COMMANDS

LET

Function Assigns data to a variable.

Format LET variable = expression

The LET command placed at the beginning of an assignment statement is
generally used in the following formats.

(Example 1)

(Example 2)

LET A= 10 LET A$= "GAME"

LET X=SIN (S-Pl/4) LET X$=A$+B$

The assignment statement assigns the value of the expression on the right
side of the = sign to the variable on the left side of the = sign. A
numerical expression corresponds to a numerical variable, and a character
expression corresponds to a character variable. If the correspondence is
not correct, a TM error is displayed.

■ Numerical value range
A numerical value can be assigned to a numerical variable within the
following range.

-10100 < numerical value< 10100

■ Character string range
When the left side is a fixed character variable - up to 7 characters.
When the left side is a registered character variable - up to 16
characters.
When the left side is a character array variable - up to 79 characters.

■ LET can be omitted.
10 LET A=1 is the same as 10 A=1

195

CHAPTER 4 COMMAND REFERENCE

LOCATE

Function Specifies the cursor position.

Format LOCATE X, Y 0 � X < 20, 0 � Y < 4

The display screen of the PB-770 is provided with 20 x 4 display
positions as shown below. Display is generally performed from the
left end of the screen by executing a PRINT statement. However, the
display position can be freely changed using the LOCATE command.

For example, when
you specify LOCATE
10, 3, the display
position is specified
at (10, 3).

However, when 3 is specified for the Y coordinate, the display is scrolled.
To avoid scroll except for LOCATE 19 ,3 (lower right corner), use a
semicolon at the end of the PRINT statement.

List A

10 X=1

20 X=X+ 1

40 PRINT "X=" ; X

50 GOTO 20

List B

10 X=1

20 X=X+ 1

30 LOCATE 0, 0

40 PRINT "X="; X

GOTO 20 50
When you execute List A, the following is displayed.

X= 2
X = 3
X= 4
X= 5

Numerals appear continuously
from the bottom of the screen
and disappear toward the top
of the screen.

When you add line 30 as shown in List B, the display is changed in such a
way that only the "X = Numeral" is gradually increased at the top left
corner of the screen.

196

POKE

Function

Format

Writes data to a specified address.

POKE address, data

4-2 PROGRAM COMMANDS

The POKE command writes data to a specified address. Both the address
and the data are specified by integers. (Fractional values are discarded.)
Addresses and data must be within the following ranges.

-32769 < address < 65536
0 �data< 256

See CLEAR for information on addresses.

CAUTION:

Never write data using POKE in the system area (&H0000 through
&H0528) or in a user area where programs have been stored. Otherwise,
the computer will not work normally especially when data are written in
the system area. In this case switch the power OFF and then ON again,
and enter NEW ALL� to clear all the programs and variable contents.

Write data to a specified address using the following program.

1 0 REM POKE EXAMPLE

20 INPUT "-32769<ADDRESS<65536", A

30 INPUT "0<=DATA<256", D

40 POKE A, D

50 PRINT PEEK A

g- CLEAR, PEEK

197

PB-770 Only

CHAPTER 4 COMMAND REFERENCE

PRINT/LPRINT

PRINT:
Functions LPRINT:

Performs output to the display.
Performs output to the printer.

Display output
Formats

Printer output

PRINT expression [, expression]
PRINT expression [; expression]
PRINT$ registered character variable

LPRI NT expression [, expression]
LPRI NT expression [; expression]

The PRINT and LPRINT commands are almost the same with the only
difference being that output is either to the display or to the printer.
However, when they are used with the TAB function, some differences
occur.

Different kinds of data such as characters, numerical expressions, all
types of graphic data, and numerical values can be displayed using a
PRINT statement.
As an example, it can be used as follows.

PRINT 1.414�
PR I NT A * B-2 � Since A and B are variables,

the result is displayed.

When these PRINT statements are executed, line change is performed
after data is displayed. Run the following program as an example.

10 A=0: 8=3

20 PRINT 1.414

30 PRINT A*B-2

40 INPUT C

Then the following is displayed.

198

I@ RUN� RUN
1.414

-2
?

Cursor

4-2 PROGRAM COMMANDS

A PRINT statement can be made to display a plural number of expres­
sions or character strings using commas (,).

10 A=0:B=3

20. PRINT 1.414, A*B-2

30 INPUT C

When you run this program, line change is performed each time data is
displayed, the same as the preceding display.

RUN
1.414

-2
?

Cursor

Although the display screen of the PB-770 consists of 4 lines, if output
is performed on the 4th line, each line is scrolled up.

10 PRINT 1, 2, 3, 4

20 END

4

Ready P0 scrolled up.

Although output is performed with line change using commas, if a
plural number of expressions and character strings are punctuated with
semicolons, they are displayed on the same line as follows.

199

CHAPTER 4 COMMAND REFERENCE

10 A=0: B=0

20 PRINT 1.414;A*B-2

30 END

RUN

1.414-2

Ready P0

An easy-to-read message can be given using the following method.

10 PRINT" ANSWER=" ; A*B-2

20 END

RUN

ANSWER=-2

Ready P0

Character and numeral output can both be performed with left justifi­
cation as shown in the previous output examples. However, since the
output of a numerical value is performed by including one position for
a sign, a space occurs where the + sign is omitted when the value is posi­
tive. A LOCATE command and functions such as TAB and USING, with
which the display location and format can be specified, are used with a
PRINT statement.

10 CLS

20 A=1

30 LOCATE 9, 2

40 PRINT A

50 A=A+1

60 IF A<100 THEN 30

70 END

200

4-2 PROGRAM COMMANDS

0

0

1

2

3

9

LOCATE 9,2

99

19

Numerical values 1 through 99 are displayed in sequence at the location
of the coordinates (10, 2} and (11, 2) of the character screen as displayed
above. The space for the sign is displayed at the (9, 2) coordinate point.

10 CLS

20 A=13;8=5:C=38

30 PRINT TAB(5); A; TAB(10); 8; TAB(15); C

40 END

RUN

TAB (5)

Space for the sign

13 5

TAB (10)

0 1 2 3 4

TAB (15)

10

38

15 19

Display is performed starting from the location specified by the TAB
function when using a PRINT statement together with the TAB func­
tion.
Display can be performed with a uniform format in accordance with
the USING function format as shown below.

10 A=3.1415: 8=31.415: C=314.15

20 PRINT USING "# # #.# # 11 ; A

30 PRINT USING"###.## 11 ; B

440 PRINT USING 11# # #.# # 0 ; C

50 FOR 1=1 TO 1000: NEXT I

60 END

3.14

31.42

314.15
Rounded to 2 decimal places.

201

CHAPTER 4 COMMAND REFERENCE

■ PRINT command expanded function (not available with LPRINT)
(1) Display pattern definition

Display pattern can be defined by including a "$" directly before
registered character variables such as AB. Atthis time, hexadecimal
values (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} must be assigned
to the registered character variable.

(2) Control code output
CLS and TAB can be executed using the PRINT command. Output is
performed using the CHR$ function as in: PRINT CHR$(A). The
control codes (numerical variable A) and output functions are as
follows.

&H02

&H06

&H07

&H09

&H0B

&H0C

&H0D

&H1C

&H1D

&H1E

&H1F

LINE TOP (Cursor to head of line)

LINE END (Cursor to end of line)

BEL (Same as BEEP 1}

TAB (Same as TAB(10))

HOME (Cursor to the coordinate (0,0)

CLS (Same as CLS}

RETURN (Line change)

(Cursor one space right}

(Cursor one space left}

(Cursor one line up)

(Cursor one line down)

Lir' LOCATE, TAB, USING, CLS

202

PB-770 Only

PUT

Function

Formats

4-2 PROGRAM COMMANDS

Stores variable data on a cassette tape.

PUT variable [, variable]
PUT "file name" variable [, variable]

The PUT command stores variable data on a cassette tape. The format
of the data file to be stored is ASCII. The GET command is used to read
the data file.

(1) PUT A [, B, C]
(2) PUT "SALES" A [, B, C]

As shown in the above format (1), the file name may be omitted. In this
case, the file name should not be specified in the corresponding GET
command. By separating two or more variables with commas, it is pos­
sible to store plural variables as a data file by a single PUT command.
Variables after PUT are stored on a 'first come, first served' basis.
Numerical data is output in the same manner as it is output to the screen
when the USING function is not employed.

The following program stores the contents of array variables A(ij) to
A{10) with a PUT command. It is assumed that the array variables con­
tain data.

10 REM PUT

20 DIM A(10)

30 FOR K=l TO 10

40 A(K)=K

50 PUT A(K)

60 NEXT K

70 END

203

CHAPTER 4 COMMAND REFERENCE

The following program reads the data stored on a cassette tape into the
PB-770 using a GET command.

10 REM GET

20 DIM 8(10)

30 FOR K=l TO 10

40 GET B(K)

50 PRINT "B(";K; ")=";B(K)

60 NEXT K

70 END

In this example, a FOR-NEXT loop is used to move the contents of
array A to array B. When storing plural data items, pay attention to the
sequence in which they are stored.

� GET,SAVE

204

4-2 PROGRAM COMMANDS

READ/DATA/RESTORE

Functions

Formats

READ: Reads data from a DA TA statement into a
variable.

DATA: Stores data (constants, characters) in a pro­
gram to be read by a READ statement.

RESTORE: Specifies the line from which the DATA
statements are read.

READ variable [, variable]
DA TA data [, data] [, "character data"]
RESTORE
RESTORE line number (1 � line number< 1 e>e>e>e>)

A READ statement is used with a DATA statement.
When a READ statement is executed, data are read from a DAT A state­
ment into variables on a one to one basis.

The following is the simplest example of a READ/DAT A statement
program.

10 READ A

20 READ 8$

30 PRINT A; 8$

40 DATA 7, 11 8"

50 END

When you run this program, 7 is assigned to variable A, and "B" is
assigned to character variable B$. The variable and data types must
match.
Since as many variables as desired can be written continuously in a
READ statement, line le> and line 2Q) can be written in one line as
follows.

10 READ A, 8$

It makes no difference whether character data is enclosed with double
quotation marks or not as follows.

205

CHAPTER 4 COMMAND REFERENCE

40 DATA 7. B

However, if data is not enclosed with double quotation marks, spaces are
ignored as data. Therefore, if a space is required, it must be enclosed
with double quotation marks.

DATA 7, 11 11 " A 111, C
This space is ignored.

NOTE: Spaces after data are not ignored. Therefore if a space is provided
after a numerical value, an ST error occurs.

DATA 1, 2 , 3, 4
These spaces are not ignored.

Double quotation marks and commas cannot be written in character
data except for the above format.
A DAT A statement that does not include any data is read as a null string.

DATA , , is regarded as DATA"","",""
Although variables in a READ statement must correspond to DAT A
statements on a one to one basis, any number of variables or data can be
placed in each statement.

10 CLEAR

20 DIM C(10)

30 READ A. B

40 FOR 1=1 TO 10

50 READ C(I)

60 NEXT I

70 DATA 1,2,3

80 DATA 4,5,6,7,8,9

90 DATA 10, 11, 12

When you run this program, data are assigned to each variable as follows.

1 2 3 4 5

206

A B C(1) C(2) C(3) C(8) C(9) C(10)

10 11 12

4-2 PROGRAM COMMANDS

If the number of data is less than the number of variables to which data
are assigned by a READ statement, an error (DA error) occurs. However,
if the number of data is more than the number of variables, an error
does not occur but the extra data are ignored.
A DAT A statement can be placed before a READ statement.
The DATA statement from which data are to be read by a READ state­
ment can be specified using a RESTORE statement.

A RESTORE statement has two different formats, one in which the line
number is written, and another in which the line number is not written.
If the line number is not written, the following READ statement reads
data form the first DAT A statement when RESTORE is executed.

10 READ A, B

20 RESTORE

30 READ C, D

40 PRINT A;B;C;D

50 DATA 7, 2

60 END

When you run this program, the assignments performed are A= 7, B = 2,
C = 7 and D = 2.
DAT A statements can also be specified by including the line number.

10 RESTORE 50

20 READ A, 8

30 PRINT A;B

40 DATA 3.7, 6.5

50 DATA 7.1, 9.3

60 DATA 5, 10.2

DATA statement specified by RESTORE
statement in line 10.

70 END

207

CHAPTER 4 COMMAND REFERENCE

When you execute this program, A = 7 .1 and B = 9.3 are performed as
the assignment.
Variables and numerical expressions can be used for a line number
specification of a RESTORE statement, but the variable or numerical
expression value used must correspond to a line number which includes
a DAT A statement.

Precautions should be taken when a READ statement is used in a pro­
gram whose execution moves to a plural number of program areas.

P0 10 READ A,B

20 GOTO PROG 1

30 DAT A 1 ,2,3,4

P1 10 READ X, Y

20 PRINT X;Y

30 DATA 71,65

40 END

When you execute this program, displayed data are not 71 and 65,
but are 3 and 4. In other words, although the execution of this program
has been shifted to Pl by GOTO PROG 1, the DATA statement of P0 is
still used.
This is useful when the DA TA statement of a main program is used in
a subroutine.
If it is necessary to read 71 and 65 into X and Y in this program,
specify the line number at the beginning of Program Pl as follows.

5 RESTORE 30

CAUTION: Be sure not to write DATA statements in lines 2200 through
2299 or in lines with 22 in the last two digits of the line
numbers (e.g. 22, 322, 922). Otherwise, such DATA state­
ments will be ignored.

208

4-2 PROGRAM COMMANDS

REM

Function

Format

Provides comments for programs.

REM comment statement

Unlike other commands, the REM command does not execute anything.
Since anything can be freely written after REM, a program explanation
can be written at important points in a program as shown below so that
the contents of each part of a program can be understood by looking at
the list.

10 REM *PROCESSING RESULTS*

20 DIM A (100)

100 REM *PRINT OUT*

500 END

Since all of the characters and symbols written after REM are considered
to be comments, it cannot be used before other commands to form a
multistatement.

Example: 150 REM *TOTAL*: INPUT N

Not executed

209

CHAPTER 4 COMMAND REFERENCE

STOP

Function Suspends program execution.

Format STOP

If the STOP command is found in a program during program execution,
a STOP message is displayed and program execution is suspended. The
execution of a program suspended by the STOP command can be re­
started from the instruction following STOP by inputting the CONT
command.

Let's check the function of the STOP command in the following
program.

10 A=l:8=5

20 C=A+B

30 STOP

40 PRINT C

50 END

When you execute this program, the following is displayed.

STOP P0-30

This indicates that execution is suspended by the STOP command in
line 30 of program area P0.
In this state, the contents of the variables can be checked as follows.

A

C
- 1 Displays the value of A.
- 6 Displays the value of C.

Also, an optional value can be assigned to a variable by entering

C=0

In actual practice, this command is used to stop execution of a program
at a point where the operation is doubtful to confirm the contents of
variables and aid in debugging.

210

4-2 PROGRAM COMMANDS

[TI Execution can be resumed using CONT even if the following opera­
tions are performed while a STOP command is in effect.
(1) Manual calculation.
(2) Assignment to a variable (Assignment without using LET).
(3) Confirmation of the contents of a variable.
(4) Execution of the following commands.

ANGLE, BEEP, CLEAR, CLS, DIM, ERASE, PRINT, LPRINT,
TRON, TROFF

[2l If the following operations are executed while a STOP command is in
effect, execution cannot be resumed by CONT.
(1) Execution of manual commands (EDIT, SAVE, LOAD, LIST,

etc.)
(2) Execution of PUT /GET.
(3) When an error occurs.

g- CONT

211

CHAPTER 4 COMMAND REFERENCE

TRON/TROFF

Function

Formats

Traces program execution/terminates tracing of
program execution.

TRON
TROFF

TRON and TROFF commands are used during program debug.

TRON Specifies the trace mode.
TROFF Releases the trace mode.

When the trace mode is specified, a program is executed while the
present program area number and the line number are displayed as
follows.

Display (0: 110)

Line number being executed
Program area being executed

Since TRON, TROFF are program commands, they can be used by
writing them in a program, but they are usually used by direct entry.

Input the following program and execute it.

P0
10

20

P1
10

20

BEEP 1

GOTO PROG 1

BEEP 0

GOTO PROG 0

212

4·2 PROGRAM COMMANDS

When you run this program, two beeps start sounding alternately. Press
the key and then enter TRON to specify the trace mode. Now,
run the program. The program area and line number being executed are
continuously displayed as shown below.

(0 : 10)

(1 : 10)

(0 : 10)

(0 : 20)

(1 : 20)

(0 : 20)

You will notice that the interval between the BEEP sounds is rather long
in trace mode. This is because execution is much slower in this mode.
In addition, during INPUT statement execution, it stops by displaying
"?" after the [area number, line number]. And, the result is displayed
during PRINT statement execution. This command is very convenient
during debug because the program execution process can be traced.

213

4-3 NUMERICAL FUNCTIONS

SIN

Function

Format

Gives the sine of X (Sin X).

SIN numerical expression
-54e>e>0

< Numerical expression < 5400°

The SIN function is used to compute Sin X.
Any one of 3 angle units (DEG, RAD, GRA) can be selected.
When the power is turned on, the angle unit is set to DEG (degree).

SIN X computation is performed using DEG (degree).

5 ANGLE.0

10 PRINT SIN30

20 PRINT SIN45

30 PRINT SIN90

50 END

When you run this program ([[]@) [[)), the results for SIN 30, SIN
45 and SIN90 flow across the display and disappear.
Run this program again after adding the following line.

25 STOP

Now the results for SIN30 and SIN45 are displayed and stopped.

Execution Example 0 . 5

0. 7071067812

STOP P0-25

To continue, enter either CONT or
(SIN90) will be displayed. (See page 131.)

Execution Example
1

Ready P0

214

, and the next result

4-3 NUMERICAL FUNCTIONS

The following program allows you to select one of the angle units (DEG,
RAD, GRA) and compute SIN X.

10 REM SIN X EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

40 INPUT "SIN X: X="; X

50 PRINT
11

SIN" ; X; "= '' ; SI NX

60 STOP

70 END

When you run this program, the angle unit is requested first as follows.

ANGLE=?

Next you should specify the angle unit as follows.

ANGLE 0 ➔ DEGREE
ANGLE 1 ➔ RADIAN
ANGLE 2 ➔ GRAD

RADIAN is selected as an example.
Enter 1.

SIN X X =? is now requested.

Next, when you input the Radian angle, such as Pl/4, the display result is
as follows.

Execution Example

SIN 0. 7853981634=0.

7071067812

STOP P0-60

215

CHAPTER 4 COMMAND REFERENCE

The angle unit is modified using the ANGLE command as described, and
the input range for each angle unit is as follows.

DEG -5400
° < Numerical expression< 5400

°

RAD -30 1r < Numerical expression < 30 1r
GRA -6000 < Numerical expression< 6000

When the value of a numerical expression is outside the ranges shown
above, an error (BS error) occurs.
A variable and a numerical expression, as well as a real number (such as
30), can be used for the argument.
When only one real number or variable is used, it makes no difference
whether or not the argument is placed inside parentheses. However,
when a numerical expression is used, the result will differ depending on
whether or not it is placed inside parentheses as follows.

SIN X + Y Add Y to the result of the SIN X computation.
SIN (X + Y) Compute the SIN of the result of X + Y.

-- ANGLE, COS, TAN

There are three different ways to express the angle of a trigonometric
function: "Degree (DEG)", "Radian {RAD)" and "Grad (GRA)."

DEG 1 ° is 1 /360 of the circumference of a circle.
RAD 1 rad. is 1 /21r of the circumference of a circle.
G RA 1 grad is 1 /400 of the circumference of a circle.

Degree and radian are mainly used, and they have the following relation­
ship.

1· =,r /180rad 3.141592654/180 rad

216

4-3 NUMERICAL FUNCTIONS

cos

Function

Format

Gives the cosine of X (Cos X).

COS numerical expression
-5400°

< Numerical expression < 5400
°

The COS function is used to compute COS X.
The angle units, X argument input range, and precision for COS X are
exactly the same as for SIN X.

Provide input to a program in which COS X is used.

10 REM COS >< EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

40 INPUT "COS X: X=''; ><

50 PRINT "COS";><;''="; COS><

60 STOP

70 END

When you run this program, angle unit input is requested by

ANGLE=?

Next, if the grad angle unit is to be used, input "2". After this, since the
angle is requested as follows, provide an input of 1355.

COS X X =?

The result will be -0.7604059656.

&8 SIN, ANGLE, TAN

217

CHAPTER 4 COMMAND REFERENCE

TAN

Function

Format

Gives the tangent of X (Tan X).

TAN numerical expression
-5400

° < Numerical expression< 5400
°

Except !numerical expression I = (2n - 1) x 1 right angle
(n = integer)

The TAN function is used to compute TAN X.
The angle units are the same as for SIN X and COS X.

A program to obtain TAN X.

10 REM TAN X EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K

40 INPUT "TAN X: X= ''; X

50 PRINT "TAN"; X; "="; TANX

60 STOP

70 END

When you obtain TAN 45 using the DEG angle unit (ANGLE 0), the
result is displayed as

TAN 45 = 1.

Next, if you try to obtain TAN 90, an "MA error" is displayed.
When the TAN function is used, the value of TAN X suddenly increases
as it approaches 90° .
At TAN 90, the value becomes infinite and computation cannot be
performed.
As a result, an "MA error" was displayed in the above example. When
the value of X is ±90 * (2n-1) (n is an integer) in TAN X, precautions
should be taken since an error occurs as mentioned above.

f:lr SIN, COS, ANGLE

218

4-3 NUMERICAL FUNCTIONS

ASN, ACS, ATN

Functions

Formats

ASN gives the arcsine (Sin-I X).
ACS gives the arccosine (Cos-I X).
ATN gives arctangent (Tan-I X).

ASN X, ACS X, A TN X. IXI � 1 (ASNX, ACS X)
IXI � Hl100 (A TN X)

The ASN, ACS and ATN functions are used to compute the inverse
trigonometric functions: SIN -I X, cos-I X and TAN -I X.
The trigonometric functions (SIN, COS, TAN) are used to obtain the
trigonometric function values of given angles. On the other hand, the
inverse trigonometric functions obtain angles when trigonometric func­
tion values are given.

A program example which uses ASN X is shown below.

10 REM ASN >< EXAMPLE

20 INPUT "ANGLE=";K

30 ANGLE K
40 INPUT ''ASN X: ><="; X

50 PRINT "ASN"; X; "="; ASNX

60 STOP

70 END

When you run this program, the following two input requests are dis­
played.

ANGLE=? 0

ASN X X =? 1

. Specifies "degree."

...... Inputs the trigonometric
tion value.

When you input these values, the following is displayed.

ASN 1 = 90

In other words, the angle X of SIN X = 1 was obtained.

219

func-

CHAPTER 4 COMMAND REFERENCE

Try this program again using ACS and A TN to replace ASN.
These inverse trigonometric functions are specified by ANGLE the
same as for SIN, COS, and TAN.
The degree (DEG) angle range in the computation result is as follows.

-90° � ASN � 90°

0° � ACS � 180°

-90° � ATN �90°

Since SIN X and COS X do not theoretically exceed 1, the value of
argument X of ASN X and ACS X must not exceed 1.

(;]F SIN, COS, TAN, ANGLE

220

4-3 NUMERICAL FUNCTIONS

HYPSIN/HYPCOS/HYPTAN

Function Give the hyperbolic functions.

HYPSIN numerical expression
HYPCOS numerical expression

Formats
-10100 < Numerical expression� 230.2585092

HYPTAN numerical expression
!Numerical expression I< 10 100

This series of functions expresses the hyperbolic functions. Each respec­
tive numerical expression is as follows.

HYP SIN

HYP COS

HYP TAN

sinhx =(ex -e-x)/ 2

cosh X = (ex +e-x)/ 2

tanh X = (ex -e-x)/ (ex +e-x)

HYPASN/HYPACS/HYPATN

Function Give the hyperbolic functions.

HYPASN numerical expression

HYPACS numerical expression
Formats IN u merical expression I < 5 x 1099

HYPA TN numerical expression
!Numerical expression I< 1

This series of functions expresses the inverse hyperbolic functions. Each
respective numerical expression is as follows.

HYP ASN slnh- 1 x =

HYP ACS

HYP ATN

=

log (x+ x2 + 1)

log (x+ x2 - 1) cosh- 1 x

tanh- 1x =

221

2..!_ IOQ 1 + X
1 -x

PB-770 Only

PB-770 Only

CHAPTER 4 COMMAND REFERENCE

SQR

Function

Format

Gives the square root of the argument.

SQR numerical expression
Numerical expression� 0

The SQR function is used to obtain a square root as follow�.

SOR X = X"0.5 = VX
In this case, the value of X must be larger than 0.

The following program is used to input the area of a circle in order to
obtain the radius.

1.0 REM SQR >< EXAMPLE

20 INPUT "CIRCLE AREA=";S

30 R=SQRCS/PI)

40 PRINT "CIRCLE RADIUS='';R

50 LOCATE 0,2

60 END

When you execute this program, the following is requested.

CIRCLE AREA = ?

Enter 100 as an example. Then 5 .641895835 is displayed for the value
of the radius.
If you run this program again and enter a minus value, an MA error
will immediately be displayed because SQR (S/Pi) becomes an imaginary
number when the argument (X) of SQR X is a minus value. To avoid this
error, it is recommended that the following line be added to check for a
positive or negative argument.

35 IF S<0 THEN 20

222

4·3 NUMERICAL FUNCTIONS

LOG, LGT

Functions

LOGX
LGTX

Gives the value of natural logarithm loge X.
Gives the value of common logarithm
logu,X

Formats
LOG numerical expression
LGT numerical expression Numerical expression> 0

LOG X computes the value of natural logarithm logeX (lnX). In this
case, "e" is the base of a natural logarithm.
The value of e is as follows.

e = 2.718281828

LGT X computes the value of common logarithm, log10X. The base of
a common logarithm is 10.

The following program computes LOG X for successive given values
of X.

10 REM LOG X EXAMPLE

20 INPUT "X=";X

30 PRINT "LOG";X;"='';LOGX

40 GOTO 20

When you execute this program,

X=?

is displayed which requests the value of X for LOG X.

223

CHAPTER 4 COMMAND REFERENCE

If you enter "1 ", the value of LOG X is displayed as LOG (1) = 0, and
the next value of X is requested.

Execution Example

RUN

1

RUN

X=?

LOG 1 =0

X=?_

The logarithmic function LOG X has an inverse relationship with
the exponential function EXP X as shown in the following graph.

EXP X

LOG X

X > 0 is required in a logarithmic function as shown in the above
graph.
If a negative value is entered, an MA error is displayed.
While LOG X is the logarithm of X (which has a base of e), the
logarithm logy X (which has a base other thane), can be computed
by the following formula.

LOG X/LOG Y

Therefore the common logarithm of X, LGT X can also be obtained
with the following formula.

LOG X/LOG 10

224

4-3 NUMERICAL FUNCTIONS

* This program allows many different logarithmic values to be obtained
when base values are entered.

10 REM ** LOG >VLOG y **

20 INPUT "><="; ><

30 INPUT "Y="; y

40 PRINT "LOG"; X; "/LOG" ; Y; "="; LOGX/LO

GY

50 LOCATE 0,3

60 STOP

70 END

This program computes the value of logy X with the formula, LOG X/
LOGY.
An execution example is provided below.

Execution Example

RUN

10

2

g- EXP

LOG 10/LOG 2= 3. 3219

28095

STOP P0-60

225

CHAPTER 4 COMMAND REFERENCE

EXP

Function

Format

Gives the exponential function ex .

EXP numerical expression
-10 100

< Numerical expression� 230.2585092

The EXP function is used to compute the value (eX) of an 1:!Xponential
function. The value of "e", which is the base of an exponential function,
is as follows.

e = 2.718281828

The expression "exponential increase" is often heard in conversation.
The nature of this function is that the value of EXP X suddenly increases
as the value of argument X increases.

Enter the following program to observe the change in the value of EXP
X.

10 REM ti EXP X ::i(:!(

20 INPUT "A=";A

30 FOR X=l TO A

40 PRINT "EXP"; X; "="; EXPX

50 FOR I=l TO 300:NEXT I

60 NEXT X

70 END

When you execute this program, a request is made for the maximum
argument value X of EXP X.

A = ?

Enter "10" as an example and press the
the following page are displayed in series.

226

key. The results shown on

4-3 NUMERICAL FUNCTIONS

Execution Example

Execution Example

EXP 230.2585= 9.999907006E99

227

EXP 1= 2.718281828

EXP 2= 7.389056099

EXP 3= 20.08553692

EXP 4= 54.59815003

EXP 5= 148.4131591

EXP 6= 403.4287935

EXP 7= 1096.633158

EXP 8= 2980.957987

EXP 9= 8103.083928

EXP 10= 22026.46579

X � 230.2585.

The value of EXP X with X = 230.2585 is as follows.

You will see that the value of EXP X increases suddenly.
Run this program again entering "231" for A.
The values of EXP X are displayed in series, and, when the value of
the argument is 231, an MA error occurs.
The input range of the argument X of EXP X is actually

CHAPTER 4 COMMAND REFERENCE

ABS

Function

Format

Gives the absolute value of the argument.

ABS numerical expression

ABS X gives the absolute value of X which is mathematically expressed
as follows.

ABS X = IXI

In regard to the X of ABS X,
When X � 0 (value Xis positive) ABS X = X,
and when X < 0 (value Xis negative) ABS X = -X.
In other words , ABS X computes in a way that allows the result to be­
come a positive number (absolute number).

Now let's look at a program which uses the ABS function.

10 REM ABS X EXAMPLE

20 READ A,8,C,D

30 X=A:GOSUB 40:X=B:GOSUB 40:X=C:GOSU

B 40:X=D:GOSUB 40:END

40 PRINT "ABS";X; "=";ABSX

50 FOR I=l TO 200:NEXT I

60 RETURN

70 DATA5,-5,0,-7.5

This program reads 5, -5, 0 and -7.5 into variables A, B, C and D
respectively using a READ statement and computes ABS A to ABS D.

228

The result is displayed as follows.

Execution Example

ABS 5=5

ABS -5=5

ABS 0=0

ABS -7. 5 =7. 5

4-3 NUMERICAL FUNCTIONS

An operation the same as the ABS function can be performed using the
SGN function.

ABS X is the same as X * SGN X

* A program in which no error occurs when a negative value is entered.

10 INPUT X

20 S=SQR<ABSX)

30 L=LOG<ABSX)

40 PRINT "SQRX=";S

50 FOR 1=1 TO 200:NEXT I

60 PRINT "LOGX=":L

70 END

When argument X is a negative value for functions such as SQR X and
LOG X, an MA error occurs.
Therefore, in this program, calculation is performed using the absolute
value of X.

&- SGN

229

INT

INT 3.9 = 3

INT 0.5 = 0

INT-0.5 = -1

INT -3.9 = -4

10 REM INTX EXAMPLE

20 READ A,B,C

30 X=A:GOSUB 40:X=B:GOSUB 40:X=C:GOSU

B 40:END

40 PRINT "INT"; X; "="; INTX

50 FOR I=l TO 200:NEXT I

60 RETURN

70 DATA5.3,0.5,-3.9

INT 5.3= 5

INT 0. 5= 0

INT-3.9=-4

CHAPTER 4 COMMAND REFERENCE

Function

Format

Gives the largest integer which does not exceed the
argument value.

INT numerical expression

230

INT X gives the largest integer that does not exceed the value of X.
For example, when the values of X are 3.9, 0.5, -0.5 and _:_3_9, INT X
is as follows for each of these values.

Let's try the following program.

When the value of the argument is positive, the value after the decimal
point is discarded. However, care should be exercised when the argument
is negative. For example, if the argument is -0.5, the integer is not 0 but
-1 which is the largest integer that does not exceed -0.5.

Execution Example

4-3 NUMERICAL FUNCTIONS

When you run this program, the results shown on the previous page are
displayed.
An INT function graph is drawn as follows by placing values of X hori­
zontally and values of INT X vertically.

INT X Graph
INT X

INT X provides "2" for all X
which are located within this
range.

X

Not included

Included

The difference for positive or negative values can be found using this
graph.
The INT function is often used by combining it with other functions
such as the RND function. In addition, the FRAC function, ROUND
function, etc. are similar to the INT function.

* A program which displays 5 integers between 0 and 9 at random.

10 FOR I=l TO 5

20 PRINT INT(10*RND);

30 NEXT I

40 END

This program was prepared by combining the INT function with the
RND function as an example.

-- FRAC, ROUND, RND

231

CHAPTER 4 COMMAND REFERENCE

FRAC

Function

Format

Gives the value of the fractional part of the argument.

FRAC numerical expression

F RAC X gives the value of the fractional part of X.
Simple examples are provided as follows.

FRAC 1.123 = 0.123

FRAC -1.123 = -0.123

Simply stated, this function discards the integer part as shown above.

Try the following program by entering many different values.

10 REM FRAC X EXAMPLE

20 INPUT "NUMBER'' ; X

30 PRINT FRACX

40 GOTO 10

* This program generates a 9-decimal place random number and then
fetches the digits one by one to convert them into single-digit integers.

10 DIM YC9)

20 X=RND

30 FOR I=l TO 9

40 YCI)=INT<10:t.:X)

50 PRINT "X=''; X

60 PRINT "Y C '' : I : '') = '' ; Y < I)

70 FOR J=l TO 150:NEXT J

80 X=FRACC10tX)

90 NEXT I

232

4-3 NUMERICAL FUNCTIONS

This program assigns a value generated by the RND function to variable
X.
The value is multiplied by 10 and then the I NT function is used to
obtain a single-digit integer. The integer is assigned to array variable
Y(1) and then the remaining decimal portion is fetched using the FRAC
function and assigned to X. Then the process begins again. This is re­
peated 9 times and results in 9 single-digit integers assigned to array
variables Y(1) to Y(9).

0. 8928802520

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9)

.. INT,RND,ROUND

233

CHAPTER 4 COMMAND REFERENCE

SGN

Function

Format

Gives a value according to the sign of argument.

SGN numerical expression

The SGN X function judges whether the value of argument X is positive
or negative. SGN X provides three different results as follows.

X > 0 (If positive) SGN X= 1
X = 0 (If 0) SG N X = 0
X < 0 (If negative) SGN X = -1

Try the following program.

10 REM SGN X EXAMPLE

20 PRINT '' JUDGEMENT OF -t- OR - "

30 INPUT "NUMBER";><

40 A=SGNX

50 IF A=l THEN PRINT

60 IF A=0 THEN PRINT

11 -t- 1'; GOTO 30

"0'': GOTO 30

70 IF A=-1 THEN PRINT ,,_,,: GOTO 30

In lines 50 to 70, if the input value is positive, a"+" is displayed, if it is
negative, a"-" is displayed, and if it is 0, a "0" is displayed based on the
value obtained by SGN X.

234

4-3 NUMERICAL FUNCTIONS

* A program which provides a sine curve.

10 CLS :FOR X=0 TO 540 STEP 20

20 S=SGN(SINX)

30 Y=S*INT<S*10*SINX)

40 IF S<0 THEN 70

50 DRAWOV4, 16-Y)

60 GOTO 80

70 DRAW(X/4,16+Y)

80 NEXT X

90 END

This program produces SIN X for X=0 to 540
°

at 20
°

increments. These
values are multiplied by 1 � to produce single-digit values which are
assigned to Y.
At this time the SGN function is taken for SIN X, and, even if SIN X
produces a negative number, the INT function obtains the integer por­
tion only.
In this way, X and Y values are plotted by the DRAW command centered
around coordinates (0, 16) - (159, 16). If a value is positive, (X/4, 16-Y)
is plotted, while, if a value is negative, (X/4, 16+Y) is plotted. (See
DRAW.)
When this program is executed, a rough sine curve is plotted as shown
below.

Execution Result

235

CHAPTER 4 COMMAND REFERENCE

ROUND

Function

Format

Gives the value of numerical expression 1 which is
rounded at a position specified by numerical expression 2.

ROUND (numerical expression 1, numerical expression 2)
Numerical expression 2: Digit position

ROUND (X, Y) gives the value of X which is rounded at the 10Y posi­
tion as follows.

ROUND (12345, 2) = 120e.l0

The numerical value 12345 is rounded at the 102 position which is the
100 position.

You can confirm the operation of the ROUND function with the fol­
lowing program.

10 FOR Y=3 TO -5 STEP -1

20 X=12345.67891

30 Z=ROUND<X,Y)

40 PRINT USING"#####.#####";X,Z:PRINT

50 FOR J=0 TO 150:NEXT J

60 NEXT Y

70 END

This program performs a calculation in which the value Y of ROUND
(X, Y) is continually decreased by 1 from 3 to -5.
The value specified for the 2nd argument Y is

IYI < 10e.l

If it exceeds this range, a BS error occurs.
When a value with a fraction is specified for the value of Y, the fractional
part is discarded.

236

Execution Example 12345.67891

10000.00000

12345.67891

12000.00000

12345.67891

12300.00000

12345.67891

12350.00000

12345.67891

4-3 NUMERICAL FUNCTIONS

* This program displays binary 8-bit random numbers and thek decimal
values.

10 Y=0

20 FOR I="? TO 0 STEP -1

30 X=ROUND<RND,-1)

40 Y=Y+<2"'I>*X

50 PRINT X;

60 NEXT I

70 PRINT I I : II ; y

80 LOCATE 0,1

90 FOR J=0 TO 500:NEXT J

100 END

Since random numbers generated by the RND function (page 239) are
rounded to one decimal place in line 30, the value of X is 0 or 1.
The value of X is generated 8 times to provide an 8-bit random number
that consists of 0s and 1 s.
At the same time, the binary 8-bit value is converted to a decimal num­
ber in line 40 which is continuously displayed. An execution example
is provided below.

RUN RUN

00101001 =41

237

CHAPTER 4 COMMAND REFERENCE

Pl

Function

Format

Gives the ratio of the circumference of a circle to its
diameter (1r).

Pl

Pl gives approximations of the ratio of the circumference of a circle to
its diameter (1r).
The value provided for 1T is as follows

1r = 3.141592654

The following program computes the area of a circle.

10 REM PI EXAMPLE

20 PRINT "CIRCLE AREA"

30 INPUT "RADIUS''; R

40 S=PI:i:R"'2

50 PRINT "S=''; S

60 END

If you enter 5 as the radius value, the area of the circle is displayed as
follows.

Execution example

S= ?8.53981634

238

4-3 NUMERICAL FUNCTIONS

RND

Function Gives a random number value.

Format RND 0 < Random number< 1

The RND function gives a 10 digit pseudo random number value that is
larger than 0 and smaller than 1.
Random numbers were first required for the simulation of statistical
phenomena or probability models, and are now used for simulations
such as economic forecasts or TV games. In particular, the fun provided
by TV games is largely due to this random number function.

The following program generates 10 random numbers.

10 FOR N=l TO 10

20 PRINT RND

30 FOR X=l TO 500:NEXT X

40 NEXT N

50 END

These results are only examples. Of course, each time you run this pro­
gram, different random numbers will be generated.

0.6791506136

0.3598232115

0.2057199883

0.5039057551

0.306977109

0. 1065778556

0.4177075471

0.5017414683

0.7551551958

0.4560918328

239

CHAPTER 4 COMMAND REFERENCE

Since a large number of digits are generated , they are not easy to handle
as they are. Therefore, when used for games , etc., random number values
within an appropriate range are obtained by combining this function
with the I NT function and ROUND function as follows.
(1) Produce integers up to a desired digit.

INT (RND * 10"L) L indicates the number of digits.
(2) Produce integers from N to the upper limit M.

ROUND (RND* (M-N), -1} + N N and M are integers. (N<M)

240

4-3 NUMERICAL FUNCTIONS

DEG

Function

Format

Converts sexagesimal to decimal.

DEG (degrees [, minutes [, seconds]])

The DEG function converts a sexagesimal value to a decimal value. The
degrees, minutes and seconds of a sexagesimal value hav·e the following
relationship with a decimal value.

DEG (deg., min., sec.) =deg. + min./60 + sec./3600

Input must be within the following range.

!DEG (deg., min., sec.)I < 10100

Input sexagesimal values into the following program to confirm opera­
tion of the DEG function.

10 REM DEG EXAMPLE

20 INPUT "DEG.= ",A

30 INPUT "MIN.= '', 8

40 INPUT ''SEC. = ", C

50 D=DEGCA,8,C)

60 PR I NT 1' DEG ('' ; A; '' , " ; B; " , " ; C; ") "

?0 PRINT "=";D

80 GOTO 20

r:u- DMS$

241

PB-770 Only

CHAPTER 4 COMMAND REFERENCE

PEEK

Function Gives the memory contents at a specified address.

Format PEEK (.
address

1 •

)

numenca expression

The PEEK function produces

ddresses

the
is

value
given

stored
below.

in
Any

specified
values included

fraction

in
address.

the address
The

are
range of

discarded.
the a

-32769 < address < 65536

See
The

CLEAR
following

for
program

information
displays

on
the
addresses.

contents of an input address.

"

�A

10 REM PEEK EXAMPLE

20 INPUT ''Addr-ess =

30 B=PEEKCA)

40 PRINT B

50 GOTO 20

CLEAR, POKE

242

PB-770 Only

4-4 CHARACTER FUNCTIONS

ASC

Function

Formats

Gives the decimal code for the first character of a
character string.

ASC "Character string"
ASC {Character variable }

All characters, numerals, and symbols displayed by the PB-770 have a
number which is called ASCII code {character code}.
Examples are as follows.

"A" 65
"B" 66 (See page 327, CHARACTER CODE TABLE.}
"6" 54

These character numbers (codes) can be directly determined by the
PB-770 using the ASC function, and can also be determined using the
CHARACTER CODE TABLE.

Enter PRINT ASC ("E") �
69 is displayed as the
ASCII code value of "E".

When an entry is made to determine two character codes or more such
as

PRINT ASC ("EF") �
only the character code for "E", the initial character, is displayed.
Therefore, to determine the codes for a long character string (such as
"ABCDEF ") serially from the beginning; use a program that
includes the MID$ function (see MID$).

* A program that displays character codes of input characters.

10 REM ASCII CODE

20 CLS

30 INPUT "WHICH CHARACTER";A$

40 PRINT ASC(A$)

50 GOTO 30

243

CHAPTER 4 COMMAND REFERENCE

When character input is performed in line 30, the code is displayed
in line 40. Since execution returns from line 50 to line 30, character
input can be continuously performed to determine codes.

The execution result is as follows.

Execution Example

WHICH CHARACTER? A

65

WHICH CHARACTER? T

84

WHICH CHARACTER? R

82

WHICH CHARACTER? 7

55

WHICH CHARACTER? 1

49

Since this program indefinitely requests character codes, press the
key to stop execution.

f:13T CHR$

244

4-4 CHARACTER FUNCTIONS

CHR$

Function
Gives the character represented by a specified ASCII
code.

Format CHR$ (Code) ij � Code < 256

The CHR$ function is used to produce the character, number, or symbol
that corresponds to a specified ASCII code.

Enter PRINT CHA$ (66)

The character "B" is displayed for ASCII code 66.
To determine two characters at one time, enter

PRINT CHR$ (71); CHR$ (80)

The characters "G" and "P" which correspond to ASCII codes 71 and
80 are displayed.
Characters that can be entered on the PB-770 by direct key input are
numerals, capital alphabetic characters, small alphabetic characters, and
some symbols. Other characters (such as graphic characters) are display­
ed using CHR$ (see page 327, CHARACTER CODE TABLE}. Numbers
(codes) that can be specified by CHR$ are within a range of 0 �Code<
256, and the fractional part is ignored.

5 U=0

10 FOR 1=33 TO 254

20 PRINT I

30 U=U+l

40 FOR J=l TO 14

50 PRINT CHR$(I);

60 NEXT J

70 PRINT

80 IF U<3 THEN 110

90 K$=INKEY$:IF K$="" THEN 90

100 U=0

110 NEXT I

120 END

245

CHAPTER 4 COMMAND REFERENCE

* This program displays the characters for character codes 33 to 254.

When this program is executed, the characters corresponding to ASCII
codes 33 to 35 are displayed by lines 14 characters long, and then the
characters corresponding to the next three sequential ASCII codes are
displayed when any key is pressed. Execution continues until the 254th
character. A display example is shown below.

33

I I I I I I I I I I I I I I
I I I f I I t I I I I t O I

34
II 11 111111ll11 11 11 11 11 JI 11 11

35

##############

36

$$$$$$$$$$$$$$

37

38

&&&&&&&&&&&&&&

g- ASC

246

4-4 CHARACTER FUNCTIONS

VAL

Function

Formats

Converts a character string into a numerical value.

VAL "Character string"
VAL (Character variable)

VAL is a function that converts a character into a numerical value.
The difference between a character and a numerical value must be
explained in order to understand VAL.
Compare the following two program examples.

Program (1) Program (2)

10 READ A,B

20 C=A+B

30 PRINT C

40 END

50 DATA3,5

10 READ A$,8$

20 C$=A$+8$

30 PRINT C$

40 END

50 DATA3,5

In program (1), the numerical data are read into the numerical variables
A and B, and the arithmetic result is displayed by assigning it to C.
The result of program execution is

8

In the above, indicates the space for the "+ " sign which is always
omitted.
On the other hand, in Program (2), 3 and 5 are read into the character
variables A$ and B$, respectively, as character data.
With character variable operations, only addition can be performed. In
this case, the result is assigned to C$.
When this program is executed,

35

is displayed. The result is just the display of a character string. There is
no "-" sign or blank for the " + " sign.

247

CHAPTER 4 COMMAND REFERENCE

This blank is very significant, and the difference will be clarified by
comparing the Program (3) and (4) execution examples which follow.

Program (3)

10 FOR I=l TO 10

20 READ A

30 PRINT A;

40 NEXT I

50 END

60 DATA3,8,-6,7,21

70 DATA223,18,8, 1,0

Execution Example 3 8-6 7 21 223 18 8

1 0

Program (4)

10 FOR I=l TO 10

20 READ A$

30 PRINT A$;

40 NEXT I

50 END

60 DATA3,8,-6,7,21

70 DATA223,18,8,1,0

Execution Example 38-672122318810

The VAL function is used to perform calculation as in Program (1) above
using the numerals read in character variables A$ and B$ as in Program

(2).

248

10 READ A$,8$

20 C=UAL(A$)+UAL(8$)

30 PRINT C

40 END

50 DATA3,5

4-4 CHARACTER FUNCTIONS

When the program is executed," 8" is displayed as for Program (1).
The following precautions should be taken when the VAL function is
used.
(1) When a character other than a numerical value, decimal point, sign

(+, -) or exponent sign "E" appear in the character string, everything
following that character is ignored. (Second and subsequent appear­
ances of the exponent sign "E" are ignored.)

(2) The first space in a character string is disregarded.
(3) When the initial character of a string is not a numerical value, decimal

point, or a sign, or when a character string is only a sign or a decimal
point, 0 (zero) is provided.

(4) When more than three numerals exist after an exponent sign "E",
an SN error occurs.

* An input subroutine where no error occurs when any key is pressed
as a response to the input request of Menu Nos. 1 to 5.

100 Z$=INKEY$:IF Z$="" THEN 100

110 IF Z$< " 1" THEN 100

120 IF Z$>"5" THEN 100

130 GOSUB UAL<Z$)*1000

In this program, when a key from 1 to 5 is pressed, the program jumps
to the corresponding subroutine at lines 1000 to 5000, and when a key
other than one of these is pressed, re-input is requested. This subroutine
is convenient to use as an input routine for job selection.

g- STA$

249

CHAPTER 4 COMMAND REFERENCE

STR$

Function Converts a numerical value into a character string.

Format STR$ (Numerical expression)

The STR$ function converts a numerical value into a character string.

What are the execution results of Programs (1) and (2)?

Program (1)

10 A=25:8=30

20 C$=STR$(A+B)

30 PRINT C$

40 END

Program (2)

10 A=25:8=30

20 C$=STR$(A)+STR$(8)

30 PRINT C$

40 END

Although these two programs seem to be identical, "55" is displayed in
Program (1) and "25 30" is displayed in Program (2).
In Program (1), the result of the numerical expression A+B is converted
into a character by the STR$ function. In Program (2), the contents of
numerical variables A and B are converted into their respective characters
and are then added. This difference appears in the execution result.

* Addition practice program.

10 REM ADDITION

20 FOR I=l TO 5

30 X=INT<RND*100)

40 Y=INT<RND*100)

50 Z=X+Y

60 PRINT STR$(X);"+";RIGHT$(STR$(Y),L

EN<STR$(Y))-1);

70 INPUT "=",A

250

4-4 CHARACTER FUNCTIONS

80 IF A=Z THEN PRINT "OK" ELSE 60

90 NEXT I

100 END

(See RIGHT$, LEN.)

This program produces five addition problems. The operator supplies the
answer for the addition of two integers up to two digits long. The pair of
numbers used cannot be predicted because the RND function is used.
The STR$ function is used in line 60 where the problem is displayed.

Although

11 60PRINT X; + ";Y;

seems to be reasonable without using STR$, a blank for the+ sign occurs
before the numerical value as follows.

15+ 30 =?

This is a good example of the utility of the STR$ function.

The VAL function is the reverse of the STR$ function.

251

CHAPTER 4 COMMAND REFERENCE

LEFT$

Function

Formats

Fetches a specified number of characters from the
left of a character string.

LEFT$ ("Character string", numerical expression)
LEFT$ (Character variable, numerical expression)

LEFT$ is a function that fetches a specified number of characters from
the left of a character string.

10

20

30

AB$="LEFT RIGHT" ... It should be noted that since the

B$=LEFT$ (AB$,4)

PRINT B$

assigned character string i� more
than 6 characters, a registered
variable is used (assigned up to
16 characters.).

When this program is executed, LEFT is displayed. In other words, four
characters from the left of the character string in AB$ are fetched.
When 0 is specified as the number of characters to be fetched, a null is
provided, and, when the number of characters specified exceeds the total
length of the string, all characters in the string are fetched. However, if
the number of characters specified exceeds 255, a BS error occurs.
The number of characters to be fetched can be specified by a variable or
numerical expression.

* A program which serially increases the character string display.

10 A8$="READ LEFT"

20 N=LEN<A8$)

30 FOR I=l TON

40 8C$=LEFT$(A8$,I)

50 PRINT BC$

60 NEXT I

70 END

g- RIGHT$

Execution Example

R

RE

REA

READ

READ

READ L

READ LE

READ LEF

READ LEFT

252

4-4 CHARACTER FUNCTIONS

RIGHT$

Function

Formats

Fetches a specified number of characters from the
right of a character string.

RIGHT$ ("Character string", numerical expression)
RIGHT$ {Character variable, numerical expression)

RIGHT$ is a function that fetches a specified number of characters from
the right of a character string.

10 AB$= "LEFT RIGHT"

20 8$ = RIGHT$(AB$,5)

30 PRINT 8$

. It should be noted that since
the character string is more
than 6 characters, a registered
variable is used.

When the program is executed, RIGHT is displayed which indicates that
five characters from the right of the character string in AB$ are fetched.
When 0 is specified for the number of characters to be fetched, a null is
provided, and, when the number of characters is specified that exceeds
the total length of the string, all characters in the string· are fetched.
However, if the number of characters specified exceeds 255, a BS error
occurs.
The number of characters to be fetched can be specified by a variable or
numerical expression.

* A program which inserts a character string in a character string.

10 AB$="AM PM"

20 BC$=" NOON,,

30 CD$=LEFT$CAB$,2)

40 CD$=CD$+" "+BC$

50 CD$=CD$+RIGHTS(ABS,3)

60 PRINT CDS

70 END

Execution Result
AM NOON PM

253

In this program, the char­
acter string in BC$ is in­
serted in the character
string in AB$ using
LEFT$ and RIGHT$.

-- LEFT$

CHAPTER 4 COMMAND REFERENCE

MID$

Function

Formats

Fetches a specified number of characters to the
right of a specified position with in a character string.

MID$ ("Character string", numerical expression 1,
numerical expression 2)
MID$ (Character variable, numerical expression 1,
numerical expression 2)

MID$ is a function that fetches a specified number of characters to the
right of a specified position within a character string. This function is a
kind of combination of LEFT$ and RIGHT$.

MID$ (A$, 3, 2)

The above expression indicates that two characters should be fetched
from A$. The two characters are the 3rd and 4th from the beginning of
the character string in A$.

10 CLEAR

20 DIM A$(0)*20

30 A$(0)="LEFT CENTER

40 8$=MID$(A$(0),6,6)

50 PRINT 8$

60 END

..... Up to 20 characters

RIGHT"
can

_
 be assigned to

a stn ng array.
(See Page 162.)

When this program is executed, a string consisting of 6 characters starting
from the 6th character from the left of A$(0) is fetched, and CENTER is
displayed.
The following precautions should be taken when the MID$ function is
used.
When MID$ (character expression, n, m) is entered:
(1) Fractional parts of values of n and m are discarded.
(2) When m is 0 and there is no character to be fetched, a null is provided.

254

4-4 CHARACTER FUNCTIONS

(3) When ",m" is omitted, all the characters starting with the nth digit
are provided.

(4) When m exceeds the remaining length of the original string, all charac­
ters starting with the nth digit are provided.

(5) When n is larger than the total length of the original string, a null is
provided.

(6) Variables and numerical expressions can be used for n and m.
(7) A BS error occurs when n and m are outside the range of

1 � n < 256 and 0 � m < 256

* A program which produces the frequency count of lower case " r"
alphabetical characters in a composition.

10 DIM A$(0)*50

20 N=0

30 INPUT "DATA=";A$(0)

40 M=LEN(A$(0))

50 FOR I=l TOM

60 IF MID$(A$(0), I, 1)==" r" THEN N==N+l

i'0 NEXT I

80 PRINT N

90 END

In this program, a text entry is made, the number of lower case "r"
alphabetical characters is counted and displayed.
Up to 50 characters (including spaces) can be entered in the text.
For example, when the following statement is entered:

Learning to master your CASIO Personal Computer

a check is made of each character to see if it is " r ", and the number of
"r "characters is counted. When the text shown above is entered, "5" is
displayed. Try this yourself.

g- LEFT$, RIGHT$

255

CHAPTER 4 COMMAND REFERENCE

LEN

Function

Formats

Provides the length of a character string.

LEN ("Character string")
LEN (Character variable)

LEN is a function that provides the length of a character stri.ng assigned
to a character variable.

When the following is entered,

CLEAR

PRINT LEN (A$)

"0" is displayed.
This is natural because variable A$ is emptied by the CLEAR command.
If:

COMPUTER" AB$= "CASIO

PRINT LEN (AB$)

is entered, "14" is displayed.
The range of values provided by the LEN function is 0 to 79.

* A character string is displayed with right justification.

10 INPUT AB$
20 L=20-LEN<A8$)

30 LOCATE L,3
40 PRINT A8$;:LOCATE 0,0

50 END

When character string input is performed in this program, the string is
displayed with right justification up to the last column of the screen.
Up to 16 characters can be entered for one line.

256

4-4 CHARACTER FUNCTIONS

INKEY$

Function

Format

Provides the entry of 1 character from the keyboard.

INKEY$

The INKEY$ function is one type of input command that resembles
INPUT, but its operation is slightly different. With the INKEY$ function,
character data produced only by a single key operation can be input. If
a key is not pressed, nothing (null) is input and execution proceeds to
the next command. It is unnecessary to press the key to input data.
The differences between INKEY$ and INPUT are shown below.

Display during
execution

Data input

Kinds of data

Execution of

Nothing displayed.

Key pressed during execution.
(No input without pressing
key.)

1 character
(All inputs treated as
characters.)

Immediate execution
next command (is unnecessary.)

Input request message. ("?"
display can be eliminated.}

Data entered when
pressed.

is

Digits or number of char­
acters within the range of a
variable such as numerical
values, or characters.

Suspended until
pressed.

is

Since IN KEY$ treats key inputs as characters, it is generally used in the
form of an assignment expression as follows.

Character variable = INKEY$

100 A$= INKEY$

110 IF A$=" "THEN 100

120 IF A$= 11E" THEN END

130 ······························

257

CHAPTER 4 COMMAND REFERENCE

When the "E" key is pressed, the program is terminated. When other
keys are pressed, execution jumps to the next command. If no key is
pressed, execution endlessly loops between lines 100 and 110.
IN KEY$ reads all keys except the key, , and keys. Pressing
the or key together with another key produces the correspond­
ing shift mode or capital mode for the pressed. However, one-key com­
mand operation produces a null.

* This is a subroutine which assigns a predetermined number of characters
to a character variable.

10 REM INKEY$ EXAMPLE

20 AB$=""

30 FOR I== 1 TO 10

40 K$==INKEY$

50 IF K$=='' '' THEN 40

60 IF K$=="t" THEN 30

70 AB$==A8$-t-K$

80 NEXT I

90 PRINT 198$

The number of characters that can be assigned to a character variable is
limited.
If a character string is entered using an INPUT statement, exceeding the
input range generates an ST error. However, in this program, when rn
characters have been entered, no further input is accepted and the pro­
gram moves to the next command (line 90).
Also, to stop input at 10 characters or less, input " * " to move execu­
tion to the next line (line 90).

S,- INPUT

258

OMS$

Function

Format

4-4 CHARACTER FUNCTIONS

Converts a decimal value to a sexagesimal value and
expresses it as a character string.

OMS$ (numerical expression)

This function converts a decimal value to a sexagesimal value and ex­
presses it as a character string. The range of the numerical expression is
as follows.

!Numerical expression!< 10100

Also, when I numerical expression I � 1 E6, minutes and seconds are not
displayed (the input value is converted as it is into a character string).

In the following sample program, input various decimal values to see how
they are converted.

a" DEG

10 REM DMS$ EXAMPLE

20 INPUT "NUMBER= 11, A

30 PRINT "DMS$(";A;") 11

11 = ";DMS$(A)40 PRINT
50 GOTD 20

259

PB-770 Only

CHAPTER 4 COMMAND REFERENCE

HEX$

Function

Format

Converts a decimal value to a hexadecimal value and
expresses it as a character string.

HEX$ (numerical expression)

This function converts a decimal value to a hexadecimal value and ex­
presses it as a character string. The numerical expression must be within
the following range. Fractional values are discarded.

-32769 < numerical expression < 65536

The resulting character string is a 4-digit hexadecimal value. Negative
numbers are expressed as two's complements.
When a number is 32768 or greater, 65536 is subtracted from it and the
result is converted to a hexadecimal value.

In the following program, input decimal values are converted to hexadeci­
mal values and then displayed. Input some values to confirm proper
operation.

� &H

20 INPUT

10 REM HEX$ EXAMPLE
11
NUMBER= JI , A

11
; A;") 11

30 PRINT "HEX$(;

40 PRINT "= &H";HEX$CA)

50 GOTO 20

260

PB-770 Only

4-5 DISPLAY FUNCTIONS

TAB

Function

Format

Moves the cursor by specified number of digits to
the right.

TAB (Numerical expression)
0 � Numerical expression< 80

This function is used in PRINT and LPRI NT statements to move the
cursor to a designated position.

10 FOR X=1 TO 5

20 PRINT X; " "' 2 :";

30 PRINT TAB (10);X A 2

40 NEXT X

When you run this program, the display is as follows.

1:::,,. 1 A 2 : '---' '---' '--' '--' '--' D,_ 1

L::,,.2 "' 2: L_JL_JL_JL_JL_JL::,,.4

TAB(10)

t::. indicates the space where the
+ sign is omitted.

When TAB (1 �) is specified as mentioned above, the cursor is moved by
1 � display positions, and subsequent display begins after that.
The range that can be specified by the TAB function is 0 to 79 including
variables and numerical expressions.
Fractional values are discarded.

* Displays a character which corresponds to an ASCII code at a desig-
nated location.

10 FOR 1=33 TO 254

20 PRINT "ASC";

30 PRINT TA8(5);I;

261

CHAPTER 4 COMMAND REFERENCE

40 PRINT TAB(13);"CHR";

50 PRINT TAB(19);CHR$(l)

60 NEXT I

70 END

When you run this program, the display will be as follows.

TAB(5)

ASC 33

TAB(13)

TAB(19)

CHR

When the key is pressed, the next code and character are displayed at
the same position.

Display position

1. Counting the head of the line as 0, count 1 for each space moved
to the right.

2. When a tab position to the left of the present screen position is
specified, the specified position is determined counting from
the beginning of the next line.

3. When a position exceeding the range of 1 screen line is specified,
the specified position is determined counting from the begin­
ning of the current line.

NOTE:
When TAB is used during the LPRINT command, the FA-10 or FA-11
printer can execute a normal TAB function, but this is sometimes not
true when using CENTRONICS printers connected through the FA-4
interface. When the TAB function is executed, the following data is
output to the printer.

(1B) H + (54) + (numerical expression value) + (0D)H

* ()
H

represents a hexadecimal value.

When TAB is not used with an exclusive printer, use the function code
(Horizontal tab) for that printer.

g- USING, PRINT, LPRINT, LOCATE

262

4-5 0/SPLA Y FUNCTIONS

USING

Function

Format

Specifies a display format_

USING "Format character string";

The USING function displays a numerical value or a character string in a
PRINT or LPRI NT statement in a certain specified format.

When numerical values are displayed in several lines, sometimes digit
or decimal point deviations occur. However they can be arranged pro­
perly utilizing the USING statement as follows.

10 A= 18.5

20 8=2.67

30 C=135.78

40 PRINT USING "UUUUU. UUU" ;A

50 PRINT USING "UUUUU. U Utt" ;s

60 PRINT USING "UUUUU. UUU" ;C

. 70 END

When you execute this program, the display can be easily read as follows.

1 8. 500

2. 670

1 35. 780

" U " and " • " as used here are the format character string.
USING can also be utilized for a character string display. The format
character string is specified with &(s).

10 AB$= "CASIO COMPUTER" :8$= "!!"

20 PRINT USING "&&&&&&&&&&&&&&&&" ;AB$;B$

30 END

263

CHAPTER 4 COMMAND REFERENCE

When you execute this program, the display will be as follows.

CASIO COMPUTER ! !
The number of characters for the CASIO COMPUTER is 14, however
since a 16 format character string is used, the two extra characters are
displayed as blanks.
When a USING statement is used, the following precautions should be
taken.

(1) Characters other than :It , • , A and & cannot be used in a character
string format.

(2) :It , • , A and & cannot be used together.
(3) Numerical format specification

tt

A

Numerical digit specification
Decimal point specification
Exponent specification

(a) :It can be specified up to 13 digits before the decimal point
and up to 9 digits after the decimal point, and altogether up to 13
digits.

9

13 . utuiuuuuuu

uuuuuuuu .uuuuu

13

(b) The position of the minus sign should also be designated by tt.
(c) A is specified at the end of a format character string.
(d) When the fractional portion exceeds the format, output is

performed by rounding off the next digit of a specified digit.
PRINT USING"###.###"; 12.3456 ➔ 12.346

(e) When the integral portion exceeds the format, % is placed at the
beginning to allow output without following the format.
PRINT USING"##.##"; 1234.56 ➔ % 1234.56

(f) Numerical value output is performed with right justification.

264

. •

4-5 DISPLAY FUNCTIONS

(4) & character string format specification
(a) & can be written as much as desired.
(b) If the number of & is smaller than the character string, output

is performed from the beginning by the number of & positions.
PRINT USING"&&&&"; "ABCDEF" ➔ ABCD

(c) Character string output is performed with left justification.
(d) Spaces are provided when the number of & is larger than the

character string.

(5) One USING specification is only effective in one PRINT or LPRINT
statement.

(6) A USING specification is renewed by a new USING specification.
(7) A USING specification can be released by USING" ";.

* A program which outputs a person's name, the height, and weight in a
certain format to the printer.

100 REM USING EXAMPLE

110 CLEAR :DIM A$(2),A!(2),B!(2)

120 FOR 1==0 TO 2

130 INPUT "NAME ",A$(!), "HEIGHT (cm) "

,A! (I)

140 INPUT "WE I GHT (K 9) '' , B ! (I)

150 NEXT I

160 FOR 1==0 TO 2

170 LPRINT TAB(2);USING"&&&&&&&&&&&&&&

&& '' ; A$< I) ;

180 LPRINT USING"######";A!(I);"cm";B!

<I);"Ks"

180 NEXT I

200 END

Execqtion Example

JOHN SM I TH

BOB JONES

MARY KING

190cm

68cm

165cm

265

85Ks

7K9

53Kg

CHAPTER 4 COMMAND REFERENCE

POINT

Function Checks whether a display dot is lit or not.

Format
POINT (X, Y) 0 � X � 159 (Horizontal position)

0 � Y � 31 (Vertical position)

A character or sign consists of small square dots on the display screen.
For example, the character A is displayed as follows.

Each point is called a dot.
The entire display consists of 5120 dots.

(0,0) X = 160 dots (159,0)

Y =32 dots

(0,31) (159.31)

By assuming that the horizontal direction is the X axis and that the
vertical direction is the Y axis, a dot can be displayed using

Coordinate (X, Y)

The POI NT function checks whether a dot (X, Y) is lit or not.
When a dot is lit on the coordinate (X, Y), "1" is given and when it is
turned off, "0" is given.

10 X=0:Y=0

20 A=POINT (X,Y)

30 PRINT A

266

4-5 DJSPLA Y FUNCTIONS

When you execute this program, if the (el, q)) dot is lit, "1" is displayed,
and if it is turned off, "q)" is displayed.
The following precautions should be taken when the POI NT function is
used.
(1) Values rounded at 1 decimal place are used for X and Y.
(2) When X and .Y exceed the range of the coordinates, an error (BS

error) occurs.

* Laser gun program.

100 CLS :AA$=
Jl

2499D8FFFFD89924":8B$="

00808080C1E3E3F7
JI

110 X=INT<RND*7)+7

120 LOCATE X,0:PRINT AA; :LOCATE 10,3

:PRINT 88;

130 N$=INKEY$

140 IF N$= JI JI THEN GOSU8 300

150 LOCATE X, 0: PRINT
11 ";

160 GOTO 110

300 DRAWC83,24)-(83,7)

310 A=POINT(83,2)

320 IF A=l THEN LOCATE 0, 3: PRINT
1
'8EE I

11;:
BEEP

330 DRAWC(83,24)-(83,7)

340 FOR 1=0 TO 30:NEXT I

350 CLS :RETURN

267

4-6 STATISTICAL COMMANDS/FUNCTIONS

STAT

Function

Format

Allows input of statistical data.

STAT [x data value] [,Y data value] [; frequency]

The ST AT command is employed for the input of statistical data in the
following manner.
(1}STATx;n

This format is for the input of single-variable data. The default value
for; n is 1.

(2) ST AT x , y ; n
This format is for the input of paired-variable data. The default value
for ; n is 1. If either the value for x or y is omitted, the value entered
immediately before is used (repeat function). Both x and y values,
however, cannot be omitted.

See 3-18 "STATISTICAL FUNCTIONS" .

.. STAT CLEAR, STAT LIST

268

4-6 STATISTICAL FUNCTIONS

STAT CLEAR

Function

Format

Clears the registers used for statistical calculations.

STAT CLEAR

This coml)land clears the registers used for statistical calculations. With
this command, the contents of CNT, SUMX, SUMY, SUMX2, SUMY2
and SUMXY all become 0. This command should always be used before
beginning a new set qf statistical calculations.

il!r STAT

STAT LIST/STAT LLIST

Function

Formats

Displays or prints basic statistics.

STAT LIST
STAT LLIST

(1) STAT LIST
Displays data names and values for basic statistics in the order of
CNT, SUMX, SUMY, SUMXY,SUMX2, SUMY2.
The output display can be suspended by pressing the key.
Pressing this key again will resume output display.

(2) STAT LLIST
The same contents as ST AT LIST are output to the printer.

L,F STAT

269

CHAPTER 4 COMMAND REFERENCE

CNT

Function

Format

Gives the number of statistically processed data (n).

CNT

The CNT function gives the number of statistically processed data.

Refer to section 3-18 for information on the use of the following
statistical functions.

COR

Function

Format

Gives the correlation coefficient (r).

COR

COR gives a correlation coefficient (r) as a numerical expression shown
below.

COR :

(n: number of data)

270

SUMX
SUMY

SUMX2

SUMY2

SUMXY

4-6 STATISTICAL FUNCTIONS

Functions

Formats

SUMX: Gives sum of x data.
SUMY: Gives sum of y data.
SUMX2: Gives sum of squares of x data.
SUMY2: Gives sum of squares of y data.
SUMXY: Gives sum of products of x data and y data.

SUMX
SUMY
SUMX2
SUMY2
SUMXY

These functions give sums, sums of squares and sums of products.

SUMX

SUMY

SUMX2

SUMY2

SUMXY

271

CHAPTER 4 COMMAND REFERENCE

MEANX
MEANY

Functions

Formats

M EANX: Gives mean value of x data.
MEANY: Gives mean value of y data.

MEANX
MEANY

These functions give the mean values of data.

MEANX

MEANY

272

SDX
SDY
SDXN
SDYN

Functions

Formats

SDX:

SDY:

SDXN:

SDYN:

SDX

SDY

SDXN

SDYN

4-6 STATISTICAL FUNCTIONS

Gives sample standard deviation of x data.
Gives sample standard deviation of y data.
Gives population standard deviation of x data.
Gives population standard deviation of y data.

These functions give sample standard deviations and population standard
deviations as numerical expressions shown below.

SOX

SOY

SOXN

SOYN

(n: number of data)

273

CHAPTER 4 COMMAND REFERENCE

EOX
EOY

Functions

Formats

EOX: Gives an estimated value of x in terms of y.

EOY: Gives an estimated value of yin terms of x.

EOX numerical expression
EOY numerical expression

These functions give estimated values as numerical expressions shown
below.

LRA
LRB

Functions

Formats

EOX(y)

EOY(x)

LRA: Gives linear regression constant term.
LRB: Gives linear regression coefficient.

LRA
LRB

These functions give linear regression constant term and linear regression
coefficient.

LRA

LRB

(n: number of data)

274

4-7 OTHER

&H

Function

Format

Converts a hexadecimal value (up to 4 digits) to a
decimal value.

&H hexadecimal value

This function converts a hexadecimal value up to four digits long to a
decimal value. The following shows a number of examples.

Hexadecimal

&H1
&HA
&H000B
&HA BCD
&HG
&H12345

Decimal

1
10
11

-21555
Error
Error

&H is not considered a function in BASIC.

(1) Manual calculation
Affix a hexadecimal value to &Hand press the key.

Example: &H 1 B 7F - 7039

(2) Program
The following shows a sample program application. A variable cannot
be used after &H, so a hexadecimal character string is affixed to &H
and then the VAL function is used to convert to a decimal value.

g- HEX$, VAL

10 REM &H EXAMPLE

20 INPUT "&H";A$

30 H=UAL<"&H"+A$)

40 PRINT 1'&H 11; A$;"="; H

50 GOTO 10

275

PB-770 Only

PROGRAM
LIBRARY

CHAPTER 5

PLEASE NOTE:

Programs in this chapter may be used
freely without permission. However,
it must be understood that the
company is not responsible for any
damage or loss as a result of using
these examples.

In the case of executing programs in
this chapter without the optional
plotter-printer, press "N" when the
PB-770 requests whether printouts
are made or not by displaying
"PRINTER ON? (Y/N)".

STOCK PRICE MANAGEMENT AND PROPER
SELLING/BUYING PRICES

This program stores stock prices for the past 53 weeks. After 53 weeks
of data have been input, each time data of a new week is entered, the
data of the oldest week is discarded. Based on the stock price data, the
program outputs the current deviation value and helpful information for
judgment on buying or selling. The program also permits display of the
deviation value and moving average, and graphically displays stock price
fluctuations.

First, start the program in P0, and the menu will be displayed on the
screen. Then, enter a number from 1 to 7 given with the menu. Entering
a number other than 1 to 7 causes the menu to be displayed again.

(1) Data input
To input data, press [Dafter the menu is displayed, and "Initial? (Y/N)"
is displayed. If you are inputting data for the first time, press the (I) key.
If you are inputting data following other data, press the [El key. When
the (I) key is pressed, "CLEAR OK? (Y/N)" is displayed on the screen.
This is to prevent data from being lost by erroneous input. Normally,
press the (I) key.
For initial input, "1) DATA=" is displayed on the screen. Enter
the appropriate stock price and press the key. For the second and
subsequent data inputs, the screen displays "WEEK=". For input of
data for the 54th and subsequent weeks, the oldest data is sequentially
erased. Therefore, the time required for input becomes a little longer.
To terminate data input, enter a negative number, and the menu will be
displayed again.

(2) Judgment on sell or buy
When menu 2 is selected, "Current Price?" is displayed. At this time,
enter the current stock price, and the program compares the current
stock price with the past data and outputs the deviation value. To
exit from this routine, enter a negative value. The menu will be displayed
again.

(3) Checking reasonable stock price

If new data has been entered using this routine, routine (2) must be
executed before correct values can be output. This is because the two
routines share part of the same variables. Entering a negative number
causes the menu to be displayed again.

278

STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYING PRICES

(4) Data output

When this menu is selected, all the data stored in memory are displayed
on the screen, then the menu appears again.

(5) Moving average

This routine calculates the moving average. When "No. of movements? "
is displayed, enter the number of weeks for which the moving average
is to be calculated. The routine calculates the moving average for the
period between the current week and the specified week. After this
routine is executed, the menu is automatically displayed.

(6) Past moving average

This routine permits reviewing the change in moving average in the
past, so this can be used to determine whether the stock price is rising
or falling.
When "No. of movements? " is displayed, enter the number of weeks
for which the moving average is to be calculated. Then, "FROM
WHEN? " is displayed. Here, enter the week from which the number
of weeks is to be counted.

Example:

Calculating the moving average for each three weeks, starting from two
weeks ago.

Data of two weeks ago

..... 692 697 685 672 689 (Current price)

The menu automatically appears after executing this routine. Be careful
when entering data in routines (5) and (6) to prevent incorrect values
from being output, especially when the amount of data (the number of
weeks) stored is relatively small.

(7) Graph

This routine graphically displays the stored data to permit easy recogni­
tion of the general trend of the stock price.
The menu display appears again after executing this routine.

Execution Example of a Graph Display

CHAPTER 5 PROGRAM LIBRARY

P0

10 CLS

20 GOSUB 80

30 INPUT "INPUT NO. '';PR

40 IF PR>7 THEN 10 ELSE IF PR<l THEN

10

50 IF PR=l THEN GOSUB PROG i ELSE IF

PR=2 THEN GOTO PROG 2

60 IF PR=3 THEN GOSUB PROG 3 ELSE IF

PR=4 THEN GOTO PROG 4

70 IF PR=5 THEN GOSUB PROG 5 ELSE IF

PR=6 THEN GOTO PROG 6 ELSE GOTO PR

OG 7

80 PRINT : PRINT "DATA INPUT l ''

90 FOR l=l TO 100:NEXT I

100 PRINT "PRICE CHECK 2''

110 FOR I=l TO 100:NEXT I

120 PR I NT "REASONABLE PR I CE 3 ''

130 FOR I=l TO 100:NEXT I

140 PRINT ''DATA OUTPUT 4''

150 FOR I=l TO 100:NEXT I

160 PRINT "MOVING ftlJE 5"

170 FOR I=l TO 100:NEXT I

180 PR I NT "PAST MOIJEMENT 6 ''

190 FOR l=l TO 100:NEXT I

200 PRINT "GRAPH DISPLAY 7"

210 RETURN

Pl

10 CLS

20 PRINT '' ::1::::1:: DATA INPUT :kt"

30 INPUT ''Initial7(Y/N)'',P.$; IF P.$=''Y''

THEN GOSUB 200

40 IF P.$=''N'' THEN A=A-1 ELSE IF P.$<)''

Y'' THEN 30

50 A=A+l:GOSUB 300

280

STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUY/NG PRICES

60 IF A>=53 THEN 80

70 INPUT ''DATA"; Z<A): If Z<A)<0 THEN Z

<A)=0:GOTO PROG 0 ELSE GOTO 50

80 INPUT ''DATA+"; DZ; C=C+l: A=53: IF DZ<

0 THEN GOTO PROG 0 ELSE ZC53)=DZ

90 FOR B=l TO 53

100 Z<B-1)=Z<B)

110 NEXT 8

120 GOTO 80

200 INPUT ''CLEAR OK?CY/N)'',T.$: IF T.S="Y

" THEN 220 ELSE IF H=''N" THEN 260

210 GOTO 200

220 ERASE Z:DIM 2(53)

230 PRINT "STOCK PRICE "

240 FOR K=0 TO 50:NEXT K

250

260

300

310

P2

10

20

30

40

50

60

70

80

90

INPUT '' 1) DAT A" ; Z < 1) : A= 1

P.S=''Y": RETURN

PRINT ''WEEK="; A

FOR K=0 TO 10:NEXT K:RETURN

CLS

PR I NT '' .:lc:t PR I CE CHECK .:lc:.:lc: ''

S=0:Q=0

FOR D=0 TO 52

S=S+Z<D):Q=O+Z<D)�2

NEXT D

IF A<54 THEN 90

E=S/53:U=Q-53.:lc:Ej:E:F=SQR(U/52)

E=S/A:U=O-AtE.:lc:E:F=SQR(U/(A-1))

100 INPUT "Cul"l"ent Pdce"; Y: IF Y<0 THE

N 140

110 D=ROUND<50+10*<Y-E)/F,-3)

120 PRINT "Devi;i.tion='';D

130 GOTO 100

140 GOTO PROG 0

P3

10 Cl,S

20 PR I NT '' t*REASONABLE PR I CE it''

281

CHAPTER 5 PROGRAM LIBRARY

P4

P5

30 INPUT "Devi�tion= ":D:Y=ROUNDCCD-50

)::l:F/l0+E,-2):JF D<0 THEN 50

40 PRINT 1
' PRICE='';Y:GOTO 30

50 GOTO PROG 0

10 CLS

20 PR I NT '' ::l::t DATA OUTPUT ::l:;4(1
'

30 FOR U=0 TO A-2

40 PRINT "DATA";U+l;"=";Z(U-tl)

50 FOR K=0 TO 50

60 NEXT K:NEXT U

70 PRINT "DATA END"

80 FOR K= l TO 200:NEXT K

90 GOTO PROG 0

10 CLS

20 PRINT " ::1:::1: MOIJlNG AIJE . .:U''

30 X=0

40 INPUT ''No. of movements''; N

50 IF A<=53 THEN 100

60 FOR L=53-N TO 52

70 X=X+Z<U

80 NEXT L

90 GOTO 130

100 FOR K=A-N TO A

110 X=X+ZCK)

120 NEXT K

130 M=>VN

140 PR I NT "MOIJ I NG AIJERAGE '' ; M

150 FOR K=0 TO 300:NEXT K

160 GOTO PROG 0

P6

10 CL.S

20 PR I NT '' :U PAST MOIJEMENT ::l:::lc •'

30 INPUT "No. of movements";I

40 INPUT "FROM WHEN ";O

50 X=0

60 IF A<=53 THEN 110

282

STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYING PRICES

70 FOR J=53-0-I

80 X;:::X-t-Z < J)

90 NEXT J

100 GOTO 140

TO A-0-I

110 FOR J;:::A-0-I TO A-0-1:IF A(;:::J THEN

180

120 X;:::X-rZ< J)

130 NEXT J

140 M;:::X/I

150 FOR K;:::0 TO 100:NEXT K

160 PRINT "Movin9 Ave. ";M

170 0;:::0-1:X;:::0:FOR K;:::0 TO 10:NEXT K:GOT

0 60

180 PRINT " END"

190 FOR K;:::0 TO 300:NEXT K

200 GOTO PROG 0

P7

10 CLS

20 PR I NT "i:i: GRAPH DI SPLAY i:i: ''

30 MX=0:FOR MD=l TO 53

40 IF Z<MD)>MX THEN MX=ZCMD)

50 NEXT MD

60 CLS :LOCATE 15, 1:PRINT "MAX=":LOC

ATE 14,2:PRINT fNTCMX)

70 FOR K=l TO 5

80 P0=130-Ki:20:DRAWCP0,27)-(P0,30)

90 NEXT K

100 FOR K=l TO A-1

110 Jl=Ki2+10: 12=25-25/MXiZ<K)

120 DRAW(Jl, J2)-CJ1,25)

130 NEXT K

140 IF INKEY$="" THEN 140 ELSE GOTO PR

OG 0

Number of bytes used: 1872

283

CHAPTER 5 PROGRAM LIBRARY

19 weeks ago 584 14 weeks ago 545

18 weeks ago 580 13 weeks ago 550

1 7 weeks ago 579 12 weeks ago 563

16 weeks ago 570 11 weeks ago 589

1 5 weeks ago 562 10 weeks ago 620

9 weeks ago

8 weeks ago

7 weeks ago

6 weeks ago

5 weeks ago

A Data counter J2
B ~ D MD
DA MX

DZ N
E a

H
J~L

P$

P0

J 1

Counters
Character data
Stock price
Average
Deviation value
Counters (for periods
to calculate moving
average in P5)
X axis of graph PR

Y axis of graph
Counter
Max. data
No. of movements

Starting week for
calculating of moving
average
Y or N (Initial?)
Graph scale
Program selection

284

635

652

673

701

692

a

s

T$
u

V
X

2 (X)

4 weeks ago

3 weeks ago

2 weeks ago

Last week

This week

685

697

685

672

689

Sum of squares of
data
Sum of data
CLEAR OK?
Counter
Variance
Counter
Stock price

Menu display

Selects
data input.

Press III for initial data
input and !El for addi-
tional data input.
Press III to clear the
stored data and !El not
to clear them.

(1) Data input

Enter a negative num-
ber to terminate data
input.

(2) Stock price check

Enter the current stock
price and its deviation
value is displayed based
on the past data.
Entering a negative num-
ber causes the menu to
be displayed.

(3) Reasonable stock
price
Enter a deviation value.
The stock price is
displayed.
Entering a negative num-
ber causes the menu to
be displayed.

[D

(Y)

(Y)

STOCK PRICE MANAGEMENT AND PROPER

SELLING/BUYING PRICES

�

�

�

584 �

DATA INPUT 1
PRICE CHECK 2
REASONABLE PRICE 3
DATA OUTPUT 4
MOVING AVE. 5

PAST MOVEMENT 6
GRAPH DISPLAY 7
INPUT NO.?-

* •DATA INPUT**
Initial? (Y /N)_

CLEAR OK ? (Y /N) _

STOCK PRICE

1) DATA 1 _

WEEK=2
DATA 1-

-1 � I

(II �

585 �

INPUT NO. 1 _

* * PRICE CHECK* *
Current Price 7 _

Deviation =49.23

Current Price 7 _

-1 � I

[I] �

55 �

INPUT NO.?-

* * REASONABLE PRICE•*
Deviation= 1 _

PRICE=670.1
Deviation= 1 _

-1 � I
INPUT NO. 1-

285

CHAPTER 5 PROGRAM LIBRARY

(4) Data output

All data are displayed
and then the menu
display appears.

Menu display

(5) Moving average

Enter the number of
movements (weeks).

(6) Moving average
in the past.

Enter the number of
movements (weeks)
for which the moving
average is to be cal­
cu lated.

Enter the starting
week.

Each moving average
is displayed and then
the menu display
appears.

(7) Graph

286

DATA OUTPUT

DATA 1 =584
DATA 2=580
DATA 3=579

DATA END
I

INPUT NO.?_

MOVING AVE.

No. of movements ? _

MOVING AVERAGE 643.2
I

INPUT NO.?_

** PAST MOVEMENT* *

No. of movements ? _

FROM WHEN?_

Moving Ave. 689

Moving Ave. 684.666···············

Moving Ave. 682
END I
INPUT NO.?_

A graph is displayed.

TELEPHONE DIRECTORY

This program permits immediate recall of a desired telephone number by
entering previously stored names. It also permits recalling a phone
number using the initial letter of a name. Names can also be arranged in
alphabetical order.

This program can be used to store and recall the phone numbers of your
friends and acquaintances. Up to 180 names can be stored at a time.
Once the names and phone numbers have been stored, it is possible to
recall the desired phone number merely by entering the initial letter or
the first few letters of the name.
When the RAM capacity is expanded to 16KB or more using the RAM
expansion pack(s), up to 255 names can be stored. In this case, it is
necessary to change the program in Pl as follows.

(8KB)
30 IF N=181 THEN 90
40 IF N=1 THEN DIM A$(180), B$(180) * 12

(16KB or more)
30 IF N=256 THEN 90
40 IF N=1 THEN DIM A$(255), B$(255) * 12

First, enter CLEAR� after inputting all of the programs.
Then, execute the program in P0, and the menu is displayed on the
screen. Enter the appropriate number, 1 to 4. There is no need to press
the � key. If an OM error (Out of Memory) occurs in line 40 of Pl,
erase the other programs or data or expand the RAM capacity using the
RAM expansion pack(s).

(1) INPUT
Stores names and phone numbers. Input data by the following proce­
dure. Data to be input is underlined.

NAME? CASIO �
TEL NO.? 123-4567 �

Input all names and phone numbers by repeating the above procedure.
When the last name and phone number are entered, enter END�- The
menu is displayed again.

287

CHAPTER 5 PROGRAM LIBRARY

(2) SORTING

Arranges the stored names in alphabetical order. While the names are
being sorted, 'SORTING ... ' is displayed on the screen. The sort
operation is completed in several seconds to a few minutes depending
on the amount of data stored. The sorted names (and the associated
phone numbers) can be sequentially displayed on the screen by pressing
any key on the keyboard. After all the names and phone numbers
are displayed, the mer,u is displayed again.

(3) LOOK FOR

Recalls the phone number when a name is entered.
Enter the name as follows:

NAME? CASIO �

The name and phone number are displayed as follows:

CASIO
123-4567

Note that only the initial letter or the first few letters of the name may
be entered to recall the phone number. In this case, if there is more
than one name with the same initial letter or first few letters, all of
them are displayed. Note also that if identical names are stored, they
are all displayed. If any name which has not been stored is entered,
'NO DA TA' is displayed on the screen. In this case, press any key on the
keyboard to return to the menu.

(4) DELETE

Deletes data which has been stored.
Enter the name to be deleted as follows:

NAME? ABCDE �

Then, the screen displays:

ABCDE
XXX-XXXX YIN? (XXX-XXXX: phone number of ABCDE)

If you really wish to delete the name and phone number, press the Ci]
key. If not, press the ffi) key. This is to assure you that no data is erro­
neously deleted.
To clear all the data which have been stored or to cancel a DD error,
execute the CLEAR command. Since menu 1 {INPUT) has the function
to add data, it may be combined with menu 4 (DELETE) to add or
delete data freely.

288

TELEPHONE DIRECTORY

P0

CLS 10

20

30

40

50

E",0

70

80

90

SORTING"PRINT "1-INPUT 2-

PRINT "3-LOOK FOR,,

PRINT "4-DELETE"

Ks=INKEYs: IF Ks=''"

IF Ks=" 1" THEN GOTO

IF K.$="2" THEN GOTO

IF K.$="3" THEN GOTO

IF K.$="4" THEN GOTO

100 GOTO 50

Pl

THEN 50

PROG 1

PROG 2

PROG 3

PROG 4

10 CLS

20 N=N+l

30 IF N=l81 THEN 90

40 IF N=l THEN DIM A$(l80),8$(l80)i12

50 INPUT "NAME ''; As<N)

E",0 IF As<N)="END'' THEN 100

70 INPUT ''TEL NO.''; Bs<N)

80 GOTO 10

90 PRINT "FULL":BEEP 1

100 N=N-1

110 GOTO PROG 0

P2

5 CLS : PRINT ''SORTING ... "

10 FOR I=l TO N

20 MMs=AsCI)::><=I

30 FOR J=I TO N

40 KKs=ASC J)

50 GOSUB 200

60 NEXT J

70 As(X)=As(I):As(I)=MMS

80 MMs=BsCX)

90 Bs(X)=Bs(I):Bs(I)=MMS

100 NEXT I

289

CHAPTER 5 PROGRAM LIBRARY

110 GOTO PROG 5

200 KU=0

210 KU=KU+l

230 Ol=LEN<MM$):O2=LEN<KK$)

240 IF KU>Ol THEN RETURN ELSE IF KU>O

2 THEN 300

250 Ml$=MlD$(MM$,KU,l):KI$=MlD$(KK$,KU

260

270

280

300

P3

10

20

30

40

50

60

70

80

90

100

110

) 1)

IF ASC<MI$)=ASC<Kl$) THEN 210

IF ASC<MI$))ASC<KI$) THEN X=J:MM$=

KK$:RETURN

RETURN

X=J:MM$=KK$:RETURN

CLS

INPUT "NAME ";MM$

X=LEN<MM$)

1=0

I=l+l

IF I=N+l THEN IF F=l THEN 120 ELSE

130

IF MM$=LEFT$<A$(I),X) THEN 90

GOTO 50

F=l:PRINT A$(I)

PRINT B$(I)

K$=INKEY$: IF K$=''" THEN 110 ELSE 5

0

120 F=0:GOTO PROG 0

130 PRINT "NO DATA''

140 K$= I NKEY$: IF K$=" '' THEN 140 ELSE 1

20

P4

10 CLS

20 INPUT "NAME ";MM$

30 X=LEN<MM$)

40 1=0

50 I=I+l

60 IF I=N-tl THEN 180

290

TELEPHONE DIRECTORY

70 IF MM.$=LEFT.$(A$(!),X) THEN 100

90 GOTO 50

100 PRINT A.$(I)

110 PRINT 8$(1);" Y/N ";
120 INPUT K$
130 IF K.$="Y" THEN 150

140 GOTO 50

150 A.$(I)=A.$(N)

160 8.$(1)=8.$(N)

170 N=N-1

180 GOTO PROG 0

P5

10 FOR I=l TON

20 CLS

30 PRINT A.$(I)

40 PRINT 8.$(1)

50 K.$= I NKEY.$; IF K.$="" THEN 50

60 NEXT I

70 GOTO PROG 0

Number of bytes used: 1003

291

CHAPTER 5 PROGRAM LIBRARY

Menu display 1-INPUT 2-SORTING
3-LOOK FOR
4-DELETE

(1) INPUT

Select menu 1 CD NAME ?-

Input the first SMITH,
�

NAME ? SMITH, JOHN
person's name. JOHN TEL NO.?-

Input telephone 03-583-4111 � NAME ?-
number.

Input the second BROWN, NAME ? BROWN, MARY
person's name. MARY � ¢=D TEL NO.?_

052-264-1453 NAME ?_

�

END � 1-INPUT 2-SORTING
3-LOOK FOR
4-DELETE

m

SMITH,

NAME ?-

NAME ? SMITH, JOHN
JOHN � SMITH, JOHN

�

03-583-4111

1-INPUT 2-SORTING
3-LOOK FOR
4-DELETE

(I]

�

�

Input telephone
number.

After completing data
input, enter END�
and then the menu is
displayed on the screen.

(3) LOOK FOR
Whose telephone num-
ber do you want to
know?

Only a family name
can be entered.

The menu is dis-
played on the screen.

(2) SORTING
Alphabetical order

After "SORTING ... "
disappears

The sorted names can
be sequentially dis-
played.

SORTING ...

ALLEN, ROBERT
06-314-2681

BROWN, MARY
052-264-1453

292

After all the names
and phone numbers
are displayed, the
menu is displayed.

(4) DELETE
What name do you
want to delete?

If you really want
to delete, press IYl
If not. press (El •

The menu is displayed.

Confirm that the data
is deleted using
menu 3.

"NO DATA" indicates
that the name has not
been stored.

SMITH,
,.Jii7

JOHN �

II]

SMITH,
,.Jii7

JOHN �

N

X

A$(1)
I

A$(180)

8$(1)
I

8$(180)

MM$

KK$
KU
01

02

293

TELEPHONE DIRECTORY

1-INPUT 2-SORTING
3-LOOK FOR
4-DELETE

NAME ?-

NAME ? SMITH, JOHN

SMITH, JOHN
03-583-4111 Y /N ? -

1-INPUT 2-SORTING
3-LOOK FOR
4-DELETE

NAME ? _

NAME ? SMITH, JOHN

NO DATA

(Number of NAMEs/TEL NOs)-1

Length of character string to be
looked for

Names

Telephone numbers

Character string to be looked for

For sorting

CROSS TOTAL

This program obtains the sums of horizontal (X) and vertical (Y} data,
or sorts the data to determine the percentage of each data element. For
example, item X may be a certain product and item Y may be a certain
month.

First, execute the program PQ>, and the following menu is displayed on
the screen:

1 DATA INPUT

2 TOTAL

3 SORT

<-For inputting data

<-For obtaining horizontal and vertical totals

.-For arranging data

4 DAT A OUTPUT ? _ .-For checking all the data

(1) Data input
When menu 1 (DATA INPUT} is selected, "CLEAR (Y/N}?" is dis­
played. To input data for the first time, press 0. Then, the program
requests you to input the values of X and Y (the value of X is the num­
ber of data elements in horizontal direction, and the value of Y is the
number of data elements in vertical direction).
Input the appropriate values.
After the values of X and Y have been input, x1---+ 2 3 4

you are requested to input the data. Input
the data according to the element numbers

2

displayed on the screen:

X = 1, Y = 1 ➔ X = 2, Y = 1 ➔ X = 3, Y = 1 .. .

X = 1, Y = 2 ➔ X = 2, Y = 2 ➔ X = 3, Y = 2 .. .

After all data are input, the grand total is
displayed and the menu display appears.

Yl

3

4

If the data entered contains an error, enter 1 again. When "CLEAR
(Y/N}?" is displayed, enter N. Then, the program asks you about the
element number whose associated data is to be corrected. Input the
appropriate element number, and "DATA?" is displayed. Input the
correct data. The correct grand total is displayed and the menu display
appears.

294

CROSS TOTAL

(2) Sum of data in item X or Y

When menu 2 (TOTAL) is selected, "PRINTER ON? (Y/N)" is dis­
played. The subtotals are printed by entering Y. The program asks you
whether you wish to obtain the sum of item X or item Y. Input X or
Y, whichever is appropriate.
When X is input, the program outputs the subtotals of X from 1 to the
preset value, and returns to the menu display after outputting the
grand total. When Y is entered, the program outputs the subtotals of
Y from 1 to the preset value, and returns to the menu display after
outputting the grand total.

(3) Sorting

When menu 3 (SORT) is selected, the program asks you whether the
subtotals of X or Y are to be sorted after displaying "PRINTER ON?
(Y /N)". When X or Y is input, "SORTING NOW" is displayed and a
sort operation is started. The data sorted in descending order is out­
put, together with the ranking, item name, subtotal and percentage
of each element. Then the menu is displayed. The sort operation requires
some time. For example, it takes approximately one minute and 10
seconds to sort 20 data elements. When the sort operation is completed,
a buzzer sounds and the data output begins. After execution of this
program, the menu display appears again.
Since this program uses many half-precision variables, it can handle a
relatively large volume of data. Note, however, that the maximum
number of digits of input data is five.
To review the result of sorting, press the I!!! key and run line 14Q.l
of the program P4.

(4) Data output
When menu 4 (DATA OUTPUT) is selected, data such as "X=1
Y=1 DATA=233" is displayed after displaying "PRINTER ON?
(Y /N)". After all the data are displayed, the menu display appears
again.

295

CHAPTER 5 PROGRAM LIBRARY

P0

Pl

10 PRINT "1 DATA INPUT", "2 TOTAL", "3

SORT", "4 DATA OUTPUT 11
;

20 INPUT R

30 IF R=l THEN GOTO PROG 1

40 INPUT "PRINTER ON?<Y /N) '', F$

50 IF R=2 THEN GOTO PROG 2

60 IF R=3 THEN GOTO PROG 3 ELSE IF R=

4 THEN GOTO PROG 5

10 INPUT "CLEAR <Y /N)?'', S$

20 IF S$="Y'' THEN CLEAR : GOTO 30 ELSE

IF S$0"N" THEN 10 ELSE 110

30 INPUT ''X''; X, ''Y•'; Y

40 DIM D!<X,Y),X!<X),Y!CY)

50 FOR J=l TO Y:Y!(J)=0:FOR I=l TO X

60 PRINT "INPUT DATA X=";J;" Y=";J,
70 INPUT D ! <I,. J)

80 Y!(J)=Y!(J)TD!<I,J)

90 NEXT I:NEXT J

100 GOSUB 200:GOTO PROG 0

110 PRINT ''CORRECTION<X, Y) '1
;

120 INPUT I,J

130 INPUT "DATA";D!CI,J)

140 FOR J=l TO Y:Y!(J)=0:FOR I=l TO X

150 Y!(J)=Y!(J)TD!<I,J)

160 NEXT I:NEXT J

170 GOSUB 200:GOTO PROG 0

200 S=0:FOR I=l TO X:X!CI)=0:FOR J=l T

0 y

210 X!(I)=X!(l)TD!(I,J):S=STD!<I,J)

220 NEXT J:NEXT I

230 PRINT ''GRAND T. "; S: FOR K=0 TO 100:

NEXT K

296

240 RETU RN

P2

CROSS TOTAL

10 INPUT "X-SUM OR Y-SUM''; P$

20 IF Ps="Y'' THEN lE.0 ELSE IF P$="X"

THEN 80 ELSE 10

80 FOR K=l TO X

90 PR I NT "X=" ; K; " SUM="; X ! < K)

35 IF F$="Y" THEN GOSUB 300

97 IF I NKEY$= '' " THEN 97 ELSE 100

100 NEXT K

110 P RINT "GRAND T.=";S

115 IF F$="Y" THEN GOSUB 340

120 IF I NKEY$= 1' " THEN 1 20 ELSE 130

130 GOTO PROG 0

lE.0 FOR K=l TOY

170 PRINT "Y=";K;" SUM=";Y!<K)

173 IF I NKEY$=" '' THEN 173 ELSE 175

175 IF F$= 1 'Y 1
' THEN GOSUB 320

180 NEXT K

190 PRINT ''GRAND T. =''; S

195 IF F$="Y'' THEN GOSUB 340

200 IF INKEY$="" THEN 200 ELSE 210

210 GOTO PROG 0

300 LPRINT "X=''; K;" SUM=''; X ! <K): RETU RN

320 LPRIN T "Y=''; I(;'' SUM=''; Y ! <K): RE TU RN

340 LPRIN T " G RAND T. ''; S

350 GOTO PROG 0

P3

10 INPUT "SOR T XOR Y?",P$

20 IF P$=''Y'' THEN GOSUB 100

GOSUB 200 ELSE $="X" THEN

30 GOTO PROG 4

100 E RASE A!

110 DIM A!(Y,2)

120 FOR J=l TOY

297

ELSE IF p

10

CHAPTER 5 PROGRAM LIBRARY

130 A!CJ,l)=Y!CJ):A!CJ,2)=J

140 NEXT J

150 N=Y:RETURN

200 ERASE A!

210 DIM A!CX,2)

220 FOR I=l TO X

230 A! C I , 1) =X ! C I) : A! C I , 2) =I: NEXT I

240 N=X:RETURN

P4

10 CLS

20 PRINT "SORTING NOW''

30 REM SORT

40 FOR K=N-1 TO 1 STEP -1

50 FOR l=l TOK

60 IF A!Cl,l))A!Cl+l,1) THEN 100

65 FOR M=l TO 2

70 T=A ! CL, M)

80 A! CL,M)=A!CL+l,M)

90 A! (l+l,M)=T

95 NEXT M

100 NEXT L

110 NEXT K

120 REM PRINT

130 FOR K=l TO 10:BEEP :NEXT K: CLS

140 FOR K=l TO N:GOSUB 220

150 PRINT USING''##'';K;" ";P$;"= 1 ';USING

"##";A! CK,2);USING''########";A! CK,

1);

160 PRINT USING"###"; A; "x"

170 IF F$=''Y" THEN GOSUB 300: NEXT K: GO

SUB 320:GOTO PROG 0

180 FOR l=l TO 300: NEXT L:NEXT K

190 PRINT "GRAND T. " ; S

200 FOR K=0 TO 300:NEXT K

210 GOTO PROG 0

220 REM RATIO

230 A=ROUNDCA!CK,l)/S,-3)t100

298

240

300

310

320

330

340
PS

5

10

20

30

40

50

60

70

80

CROSS TOTAL

RETURN

LPRINT USING''##''; K; '' ''; P$; ''="; USIN
G"##"; A! <K, 2); USING"########''; A! <K

) i:,;

LPRINT USING"###"; A;"¾'': RETURN

PR I NT '' GRAND T. ''; S

LPRINT "GRAND T.";S

RETURN

CL,S

FOR J=l TO Y:FOR I=l TO X

PRINT "X=";I;" Y=";J;" DATA=";D!CI

) J)

IF F$="Y" THEN 50

IF INKEY$="" THEN 40 ELSE 60

LPRINT ''X=";I;'' Y=";J;" DATA='';D!

<I) J)

NEXT I:NEXT J

IF F$=''Y'' THEN LPRINT : LPRINT : LPR

INT

GOTO PROG 0

Number of bytes used: 1737

299

CHAPTER 5 PROGRAM LIBRARY

A I, J S$
A! () K~M T

N

Array subscripts.
Counters.
Number of data ele-

D! () XI ()
F$ P$ YI ()

Y or N.
Variable for data ex-
change.
Array for sums of X.
Array for sums of Y.

R

Percentage.
For storing data
during sorting.
Data array.
Determines whether
the printer is used or
not. s

ments during sorting.
X or Y.
Menu selection.
Grand total.

* If you wish to handle data more than 5 digits, change variables Al (), DI (), XI () and
YI () as follows: A(), D(), X() and Y()

Sample Data

X::: 1

X= 2

X= 3

X= 1

X= 2

X= 3

X= 1

lo{= 2

X= 3

Menu display

(1) Data input

Y=

Y=

Y=

Y=

Y=

Y=

Do you want to
clear the stored
data?
How many
horizontal items?
How many
vertical items?

Input data
(X=1, Y=1).

DATA=

DATA=

DATA=-

2 DATA=

2 DATA=

2 DATA=

3 DATA=-

3 DATA=

3 DATA=

321

369

357

159

147

123

842

862

579

(D �

(II �
3 �

3 � Y= 1

DATA INPUT

2 TOTAL
3 SORT

4 DATA OUTPUT ?

CLEAR(Y/N)? _

x? _

Y?_

INPUT DATA X=

?_

300

1

1

1Y=

Y=

Y=

1

1

CROSS TOTAL

Input data 321 � (X=2, Y=l).
INPUT DATA X= 2 Y= 1
?_

Input all the data by repeating above.

Grand total
display

m�
(ID�

GRAND T. 3759

1 DATA INPUT
2 TOTAL
3 SORT
4 DATA OUTPUT ?

PRINTER ON? (Y /N)_
X-SUM OR Y-SUM? _

0�
�
�
�

�

m�
(ID� _

(y) �
�
�
�

Menu display

(2) Sum of data in item X

Is the printer us ed?

Enter X � for X
subtotals and Y �
for Y subtotals.

Output of each sub-
total (SUM) and
grand total.

Menu display

(2) Sum of data in item Y

Is the printer used?

Enter Y � for Y
subtotals.

Menu display �

X=l SUM=1322

X=2 SUM= 1378
X=3 SUM=1059
GRAND T. =3759

1 DATA INPUT
2 TOTAL
3 SORT
4 DATA OUTPUT ?

PRINTER ON?(Y/N)_

X-SUM OR Y-SUM?

Y= 1 SUM= 1047
Y=2 SUM=429
Y=3 SUM=2283
GRAND T. =3759

1 DATA INPUT
2 TOTAL
3 SORT
4 DATA OUTPUT ?_

301

_

_

CHAPTER 5 PROGRAM LIBRARY

(3) Sorting

If the printer is con­
nected, enter Y � .
Arrangement for each
subtotal (X or Y)
Sort being
executed.

The data sorted in
descending order is
output, together
with ranking, item
name, subtotal and
percentage.

Menu display

If the printer is con­
nected, enter Y �

When sorting data
in item Y, enter
Y�.

The data sorted in
descending order
is output.

(4) Data output

If the printer is con­
nected, enter Y �

PRINTER ON? (Y /N)_

SORT X OR Y? _

SORTING NOW

1 X=2
2 X=l
3 X=3

1378 37%
1322 35%
1059 28%

GRAND T. 3759

DATA INPUT

2 TOTAL

3 SORT

4 DATA OUTPUT ? _

PRINTER ON ? (Y /N) _

SORT X OR Y

SORTING NOW

1 Y=3 2283 61%

1047 28%

429 11%
2 Y=l

3 Y=2

GRAND T. 3759

1 DATA INPUT

2 TOTAL

3 SORT

4 DATA OUTPUT?_

PRINTER ON ? (Y /N) -

X=l Y=l DATA=321

X=l Y=l DATA=369

X=l Y=l DATA=357

X=l Y=2 DATA=159

* The sum of percentages is not always 100"/4 depending on data values.

302

1

GRAPH MAKING PROGRAM

This program draws various types of graphs with the plotter-printer
(F A-10 or F A-11). Up to 12 data items can be input. The range of data
is as follows.

I Value of data I � 1 E90
The program can draw beautiful band, bar, and line graphs, taking
advantage of the 4-color plotter-printer.
* This program is stored on the cassette tape which comes with the

FA-11 optional plotter-printer. It is also stored on the microcassette
tape which comes with the CM-1 optional microcassette tape recorder.

When the program is executed, the menu is displayed. First, data must be
entered. This can be done by pressing G].
The range of data is shown above. Data may be negative numerical data.
Up to 12 data items can be entered. After the 12th data item is entered,
the menu display automatically appears. To terminate the input in the
middle, press the� key without entering any numerical data.
Menu 2 is used to correct input data. Pressing (I] causes the first input
data to be displayed, and pressing the� key causes the next data to
appear. Pressing the � and� keys causes the previous data to appear.
Input the correct data when data to be corrected appears.
Menu 3 is the routine to make graphs. Three kinds of graph names are
displayed by pressing @J. Select the type of graph by pressing(!], (I], or
@J. (Pressing 0causes return to the menu display.)
Type 1 is a band graph. The entire length of band represents 100%, with
the percentage of each data element represented by the length it oc­
cupies. For easy recognition, the individual data elements are shown in
different colors and stripes. When the band graph is selected, negative
data causes the menu to be displayed.
Type 2 is a bar graph. The scale is automatically set according to the
size of input data. In this graph, positive values are output in green and
negative values are output in red.
Type 3 is a line graph. When@J is pressed, "Over previous graph?" is dis­
played. If a bar graph has been drawn just before, a line graph can be
overwritten on the bar graph by pressing [!). If no bar graph has been
drawn or a line graph should not be overwritten on a bar graph, press CID.
In this case, the appropriate scale is automatically set and the line
graph is drawn.
Regardless of the type selected, the menu display appears after the
graph is drawn. The menu display also appears when no data is entered.
Note that starting the program again clears the existing data.
Menu 4 terminates program execution.
Menu 5 is provided to output the data to the plotter-printer. It can
also be used to output the total of data.

303

CHAPTER 5 PROGRAM LIBRARY

Print-out Example

0 10 20 30 40 50 60 70 80 90 100(¼)

Pr-int Data

D<l)= 1200

D<2>= 4500

D(3)= 8383

D<4)= 9102

D<5>= 7701

D(6)= 1532

D<7)= 4562

D<B)= 18020

Total= 55000

P0

20000

15000

10000

5000

0

10 CLEAR

20 CL,S :PRINT " ---- DATA ---- "

30 PRINT TAB(2); '' 1: lnPut 2: Cor-r-ec t'', T

AB(2); '' 3: Gr-aPh 4: END", TAB< 2); "5: Pr­

int Data":

40 K=UAL<INKEY$);IF K<l THEN 40 ELSE

IF K)5 THEN 40

304

GRAPH MAKING PROGRAM

120 LOCATE 6, 0: PRINT ''

50 BEEP :GOTO Kt100

100 CLS :ERASE D:DIM DC13):Z=l

110 LOCATE 2, 3: PR.INT ''<RETURN> : END";
,, .

•

130 LOCATE 0, 0: PRINT "DC"; Z; ")=";: INPU

T "", AB$

140 IF AB$()'''' THEN DCZ)=IJAL(A8$): IF Z

(12 THEN Z=ZTl:GOTO 120 ELSE 20 EL

SE Z=Z-1:GOTO 20

200 IF Z<l THEN 20

210 CLS :I=l:PRINT TABC46);'':Shift RE

TURN",TABC6);":RETURN ";

220 LOCATE 4,2:PRINT CHR$C228);CHR$(22

9):LOCATE 4,3:PRINT CHR$C230);CHR$

(231);

230 DRAWCC32,23)-C47,23)-(47,24)-(32,2

4):LOCATE 0,0:PRINT "DC";

240 LOCATE 2, 0: PR I NT I; ")=,,;DC I) ; 11

11 ": LOCATE 6, 1: PRINT
II

250 LOCATE 6,1:INPUT AB$:K$=INKEY$:IF

AB$()'' 11 THEN D(I)=1JftL(A8$)

260 IF K$=CHR$C24) THEN I=I-1:IF I<l T

HEN 20 ELSE 240

270 IF K$=CHR$C13) THEN I=!Tl:IF I>Z T

HEN 20 ELSE 240

280 IF K$=CHR$C23) THEN I=ITl:IF I>Z T

HEN 20 ELSE 240

290 IF K$="" THEN I=!Tl:IF I>Z THEN 20

ELSE 240

300 IF Z<l THEN 20 ELSE CLS

310 PRINT TABC5); "1: Band", TAB(5); "2: Ba

305

r-"

CHAPTER 5 PROGRAM LIBRARY

320 PR I NT TAB (5) ; 1 1 3: Line" , TAB (5); "4: ME

NU";

330 K=UAL<INKEY$):IF K<l THEN 330 ELSE

IF K>4 THEN 330

340 BEEP :GOTO K*1000

400 LPRINT CHR$(28);CHR$(46):END

500 IF Z<l THEN 20 ELSE GOSUB 6000:LPR

INT ''Ql ": lJ=0

510 LPRINT ''M53,0 11

,
11 PPdnt Data"

520 FOR I=l TO Z

530 LPRINT ''M''; 50-4*1; ", 0", ''PD(11; MID$(

STR$ <I), 2); ") = 11; D <I)

540 U=lJ+D(I):NEXT I

550 LPRINT 1
1 M";50-l*4�5;'',0 11 ,"PTotal= 1

'

;U:GOSUB 6000:GOTO 20

1000 GOSUB 6000:A=0

1010 FOR 1=1 TO z:IF D<I)<0 THEN ERASE

!:GOTO 20 ELSE A=A+D(I):NEXT I

1020 IF A<=0 THEN 20

1030 LPRINT ''05,0'', "Xl,8, 10", "M85, 1", "P

(" ; CHR$ (37) ; ") "

1040 FOR 1=100 TO 0 STEP -10:LPRINT "M"

: -4+8*!/10: ", l 1
1

, "P": I: NEXT I

1050 B=0:C=0

1060 FOR I=l TO Z

1070 C=ROUNDCD(l)/A*80+C,-2)

1080 LPRINT 11 J"; I MOD 4, "A'';B; '',-3, '';C;
II

J
-23"

1090 LPRINT ''G"; I MOD 2+1; ,, , 11
; C-B: ", -20

,";(I MOD 3)/4+.5

1100 B=C: NEXT I

1110 LPRINT "H30":GOTO 20

2000 GOSUB 6000:GOSUB 7000:GOSUS 8000

306

GRAPH MAKING PROGRAM

2010 FOR I=l TO Z
2020 IF DCI)>=0 THEN J=2 ELSE J=3
2030 LPRINT "J";J

112040 LPRINT A"; O; ", ,, ; E,-8::+:I: 11, "; ROUND CD
CI)/A::t:90/N+O, -2); ", "; -8::+:I

11 2050 LPR I NT M" ; 0: " , " : 6-8::+: I , 11 G 1 , ": ROUND
<DC I)/A::t:90/N, -2); ", -6"

2060 NEXT I
2070 LPRINT ''M0,":-8::+:CZ+1):GOTO 20
3000 IF 2<2 THEN 20 ELSE CLS :PRINT "Ov

er- Pr-evious 9r-aph?",TAB(8); ''Y/N"
3010 K$=INKEY$: IF K$="Y'' THEN BEEP :GOT

0 3080 ELSE IF K$()''N" THEN 3010 E
LSE BEEP

3020 GOSUB 6000
3030 GOSUB 7000:GOSUB 8000
3040 LPRINT "Ll '', "J0"
3050 FOR I=l TO Z
3060 F=3-8::+:I: IF I MOD 2=1 THEN LPRINT ''

D0, 11
; F: ", 90, 11; F ELSE LPRINT ''D90,"

:F: 11 ,0, 11 :F
3070 NEXT I:LPRINT ''L0", "M0,0''
3080 S=S+l:IF S)3 THEN S=0
3090 T=T+.25:IF T>3.9 THEN T=0
3100 IF T<2 THEN LPRINT ''Bl. 6" ELSE LPR

INT "86.4"
3110 LPR I NT ,, J 11; S, 11 L 11; T

3120 G=ROUND(D(l)/A*90/NT0,-2):H=-5
3130 FOR 1=2 TO Z
3140 U=ROUND<DCJ)/A*90/NT0,-2):U=3-8il
3150 LPRINT "D";G;",";H; 11 ,";U;", 11 ;U
3160 G=U:H=U
3170 NEXT I

307

CHAPTER 5 PROGRAM LIBRARY

3180 LPRINT "83.2'', "M0, ";-8*<Z·rl):GOTO

20

4000 GOTO 20

6000 LPRINT CHR$(28);CHR$(37),"00,0",''J

0", "L0", 11 Sl 11, "Q0", "Y0", 11 83. 2 11 , "H20
II

6010 S=0:T=0:RETURN

7000 Y=-9E99:B=9E99

7010 FOR I=l TO Z

7020 IF D(I)>Y THEN Y=D<I)

7030 IF D(I)<B THEN B=D<I)

7040 NEXT I

7050 IF Y>=0 THEN D(0)=Y ELSE D(0)=0

7060 IF B)0 THEN D(ZT1)=0 ELSE D<ZTl)=B

7070 RETURN

8000 IF SGND(0)iSGND(ZT1)(=0 THEN M=ABS

CD(0)-D(Z+l)) ELSE M=DC0):IF M<0 T

HEN M=ABSD<Z+l)

8010 IF M=<0 THEN 20 ELSE R=INTLGTM:A=l
0-''R

8020 IF A*INT(M/A)i.75<M THEN A=Ai.5

8030 D=LENCSTR$(A))*2.4T5

8040 IF SGNDC0)*SGND<Z+1)(0 THEN N=INTC

M/A)+2 ELSE N=INTCM/A)Tl

8050 C=ABSINTCDC0)/A)TSGNDC0)

8060 FOR I=N TO 0 STEP -1:IF C=0 THEN 0

=I*90/N

8070 C=C-1:NEXT I
II 8080 LPR I NT D0, 0, 90, 0", 1

1 Q 1 " : W= 18/N: 1J=0

8090 1J=IJT5:IF U*W<18 THEN 8090

8100 IF DC0)<=0 THEN 8150 ELSE X=O

8110 K=ROUND<X, -2): LPRINT "D'': K; '', 2, ": K
; II' -2"

308

GRAPH MAKING PROGRAM

8120 LPRINT 1
1M 11 ;K; ", 11;D, "P'';ROUND<<X-0)

*A*N/90,R-2)
8130 LPRINT 1 'Ll 1

',
11 D 1':K;",0,'';K; 11 ,";-Z;f::8

-2, 11 L0 11 : X=X-t-W.:kU
8140 IF X<90 THEN 8110
8150 LPRINT "D90, 2, 90, -2'', ''M90, 11

; D, "P";

ROUND((90-0)*A*N/90,R-2)
8160 IF D(Z-t-1))=0 THEN 8220 ELSE X=O-W*

1J
8170 K=ROUND<X,-2):LPRINT 11D'';K; ",2, '';K

; .. J -2''

8180. LPRINT "M"; K; 1
1

, "; D, "P 11

; ROUND((X-0)
*A*N/90,R-2)

118190 LPRINT Ll","D 11 :K: 11 ,0,'';K: 11 ,";-Z*8
-2, "l0" :X=X-W:.kU

8200 IF X>0 THEN 8170
8210 LPRINT 11 D0,2,0,-2 11

, 11 M0, '';D, "P";ROU
ND<-O*A*N/90,R-2)

8220 LPRINT "D0, 0, 0, ";-8.Jl::Z-2; 11 , 90, 11 :-8*

Z-2; ", 90, 0", 1
1 M0, 0"

8230 RETURN

Number of bytes used: 2712

If one-key commands are used for the input of lines 30, 140, 240, 3010,
3060 and 8000, spaces are automatically entered after the commands
and a whole line cannot be input because the input range of 79 characters
is exceeded. Therefore, input each line after deleting extra spaces using
the key.

Example: 30 PRINT TAB(2);

30 PRINTTAB(2);

309

Menu display

(1) Data input

After the 1 2th data
item is entered, the
menu display automati­
cally appears.

(2) Data correction

After the correction is
made to the last, the
menu is displayed.

(3) Graph making

Band graph is
printed out.

Bar graph is
printed out.

Determine whether
a line graph is over
written on the bar
graph or not.

Line graph is
printed out.

(5) Data output.

Data are printed out.

(4) Execution
termination.

or

4: MENU

(After the graph is output,
the menu is displayed.)

(After the graph is output,
the menu is displayed.)

Over previous graph?

Y/N

(After the graph is output,
the menu is displayed.)

(After the data are output,
the menu is displayed.)

DATA
1 : Input 2 : Correct
3 : Graph 4 : END
5 : Print Data

D(1) =

<RETURN> : END

D(2) =

D(1) = 1200
?

Shift RETURN (Previous data)
RETURN (Next data)

1 : Band
2: Bar
3: Line

CHAPTER 5 PROGRAM LIBRARY

2112

1200

310

REFERENCE
MATERIAL

CHAPTER 6

6-1 PB-770 COMMAND TABLE

6-1-1 Operational Symbols

[I] Arithmetic operators

Power xY

Multiplication xxy

Division x.;..y

Remainder x.;..y=z

Addition x+y

Subtraction x-y

Assignment x=y+s

X"Y

XMODY

X+Y

X-Y

X = Y+5

Raise X to power Y.

Multiply X by Y.

Divide X by Y.

Remainder when
X is divided by Y.

Add Y to X.

Subtract Y from X.

Assign Y + 5 to X.

[2l Relational operators (conditional expressions)

x=y X is equal to Y.

X 3< y

x<y

X>y

X = Y

X<>Y,X><Y

X < Y

X > Y

X is not equal to Y.

X is smaller than Y.

X is greater than Y.

x:;;;y

x�y

X<=Y,X=<Y

X>=Y,X=>Y

X is smaller than or equal to Y.

X is greater than or equal to Y.

• The relational operators are valid only in IF statements.
• A comparison can be made between numerical constants, numerical variables, and

numerical expressions, and between character constants and character variables.

� Character expression operators

+·····Two or more character strings can be concatenated by a + (plus sign).

6-1-2 Special Character

Xx 1QY XEY Exponent entry (Multiply number X by
Y power of 10.)

2

2

3

4

4

5

• If the absolute value of the operation result is equal to or greater than 10 1• or smaller than 10-3

(0.001), it is automatically indicated by exponential notation.

312

X*Y

X/Y

1

6-1 PB-710COMMAND TABLE

6-1-3 Built-in Functions

Trigonometric sinx SIN X 214

cosx cosx 217

tanx TAN X 218

Inverse sin·1 x ASN X
trigonometric

cos·1 x ACSX
219

tan·• x ATN X

Hyperbolic sinh x HYPSINX
cash x HYPCOS X 221

tanh x HYPTAN X

Inverse sinh· 1 x HYPASN X
hyperbolic cosh· 1 x HYPACS X 221

tanb· 1 x HYPATN X

Logarithmic logx LGTX
223 lnx LOGX

Exponential ex EXP X
226

Power xY X"Y 26

Square root .Jx SQRX 222

Absolute IXI ABS X
228 value

Integer IN TX

230

Fraction FRACX
232

Circular 1T Pl
constant

238

Random RND
239 number

Gives the sine of X.

Gives the cosine of X.

Gives the tangent of X.

Gives the arcsine of X.

Gives the arccosine of X.

Gives the arctangent of X.

Gives sinh X.
Gives cash X.
Gives tanh X.

Gives sinh" 1 x.
Gives cosh· 1 x.
Gives tanh· 1 x.

log
10

X (common logarithm)
loge X (natural logarithm)

X power of natural logarithm
base (e)
Y power of X.

Gives the square root.

Gives the absolute value of X.

When X>l'l, the fraction portion
of X is discarded.
When X<l'l, the fraction portion
of IX I is rounded up, a - (minus
sign) is prefixed to IX I.
INT1.2--+1
INT-1.2--+-2

Eliminates the integer portion to
obtain only the fraction portion.

Gives an approximate ratio of
the circumference of a circle to
its diameter in 11 digits:
3.1415926536.

Generates a 11'!-digit pseudo
random number (l'l < RND < 1).

313

CHAPTER 6 REFERENCE MATERIAL

Sign SGN X Checks the sign of an argument:
X<0 ➔ -1
X=0 ➔ 0 234

X>0 ➔ 1

Rounding ROUND (X, Y)
236

Rounds off the value of X
at 1 eJY positions.

Degree, Sexagesimal
minute, ➔decimal

DEG (d [,m l,s] I) Gives the decimal
(d, m, s: numeri• equivalent of a

241
second cal expressions) hexadecimal value.

Memory PEEK X Gives the contents of address X
contents 242

reading

6-1-4 Character Functions

PRINT ASC
("E") 243

Gives character ASCcode of first
character of a
string.

Gives one CHR $ PRINT CHR $
character de• (69)

signated by 245

character code.

Converts VAL A= VAL (X$)
numeral in
a character
string to 247

numerical
value.

Converts nu- STR $ C$ = STR $(X)
merical value
to character 250

string.

Fetches speci- LEFT$ C$= LEFT$
fied number (X$,3)
of characters

Displays the character code of
character E.

Displays character (E) equivalent to
character code 69.

Converts a character string of nu-
merals stored in character variable
X$ to a numerical value.

Converts a numerical value stored
in numerical variable X to a charac-
ter string.

Fetches the three characters on
the left of character string stored
in X$ and assigns them to C$.

from left of 252

character
string.

314

6-1 PB-770 COMMAND TABLE

Fetches speci- RIGHT$ C$ = RIGHT$
fied number (X$,3)
of characters
from right of 253

character
string.

Fetches speci· MID$ C$ =MID$
tied number of (X$,3,5) characters start-
ing from the spe-

254

citied position.

Counts the LEN A = LEN (X$)
number of
characters in

256
a character -
string.

Inputs one INKEY $ A$ = INKEY $
character
from the 257

keyboard.

Converts a OMS$ C$=DMS$(X)
decimal value

259
to sexagesimal.

Converts a HEX$ C$=HEX$(X)
decimal value

260 to hexadecimal.

6-1-5 Display Functions

Checks POINT POINT (10, 20)
whether a
dot on the

Fetches the three characters on
the right of character string
stored in X$ and assigns them to
C$.

Fetches the five characters starting
from the third character of character
string stored in X$ and assigns them
to C$.

Assigns the number of characters in
character string stored in X$ to A.

When IN KEY$ is executed, if one
key on the keyboard is pressed, it is
assigned to A$. Only one character
can be assigned to A$.

Converts the numerical value assign-
ed to X to a character string that
represents the sexagesimal value
of X.

Converts the numerical value assign-
ed to X to a character string that
represents the hexadecimal value
of X.

Checks whether the dot represented
by coordinates (Hl, 20) is on
(displays 1) or off (displays 0) 266

screen is on
or off.

Moves cursor TAB PRINT TAB(10) Tabs cursor to position 10 on the
by specified

261 number of
positions.

Specifies USING PRINT USING
output "###.##";A 263
format.

screen.

Displays a numerical value stored in
numerical variable A according to
format"###.##"

315

CHAPTER 6 REFERENCE MATER/AL

6-1-6 Statistical Functions

CNT n

SUMX Ex
SUMY Ey
SUMX2 Ex 2

SUMY2 Ey•
SUMXY Exy

MEANX X
MEANY y

SOX XUn-1
SOY YUn-1
SOXN XUn
SOYN yun

LRA a
LRB b

COR

Number of statistical data processed.

Sum of X data.
Sum of Y data.
Sum of squares of X data.
Sum of squares of Y data.
Sum of products of X data and Y data.

Mean of X data.
Mean of Y data.

Sample standard deviation of X data.
Sample standard deviation of Y data.
Population standard deviation of X data.
Population standard deviation of Y data.

Linear regression constant term.
Linear regression coefficient.

Correlation coefficient.

EOX �
EOY �

Estimated value of X for Y.
Estimated value of Y for X.

316

270

271

272

273

274

270

274

r

6-1 PB-770 COMMAND TABLE

6-1-7 Manual Commands

Automatically AUTO AUTO
generates
line numbers.

AUTO 100
130

AUTO 50, 20

Resumes CONT CONT
program 131
execution.

Deletes DELETE DELETE 50
program.

DELETE 30-

DELETE -100 132

DELETE
150- 200

Modifies EDIT EDIT
program.

134
EDIT 30

Displays LIST LIST
program list.

LIST 50

LIST 30-

LIST - 50 137

LIST 30 - 50

LIST ALL

LIST V

Line numbers starting with line 10
and incremented by 10.

Line numbers starting with line 100
and incremented by 10.

Line numbers starting with line 50
and incremented by 20.

Resumes the execution of a program
that has been stopped by a STOP
statement or by the key.

Deletes line 50.

Deletes from line 30 to the end.

Deletes up to line 100 from
the beginning.

Deletes from line 150 to line 200.

Displays the first line and specifies
the EDIT mode.

Displays line 30 and specifies the
EDIT mode.

Displays the program in the pre-
sently specified program area.

Displays line 50.

Displays from line 30 to the end.

Displays up to line 50.

Displays from line 30 to line 50.

Displays all programs in the entire
program area.

Displays registered variable names.

317

CHAPTER 6 REFERENCE MA TE RIAL

Prints LUST LUST
program list.

LUST50

LUST 30-

LLIST-50
137

LUST 30-50

LUST ALL

LUSTV

Reads LOAD LOAD
program from
cassette tape.

LOAD ALL

LOAD, A

LOAD,M

LOAD, D, 139

4096

LOAD "ABC"

LOAD ALL
"CASIO"

LOAD
"TEST",A

LOAD
"TEST", M

LOAD
"PB", D,4096

Erases NEW NEW
program.

143

NEWALL

Prints the program in the presently
specified program area.

Prints line 50.

Prints from line 30 to the end.

Prints from the beginning to
line 50.

Prints from line 30 to line 50.

Prints all programs in all program
areas.

Prints registered variable names.

Reads a program in internal code
format to the presently specified
program area.

Reads all programs in internal code
format to the al I program areas.

Reads a program in ASCII code
format to the presently specified
program area.

Links the program in the presently
specified program area with the
program read in ASCII code format.

Reads internal code format data
from memory address 4096(10).

Perform functions similar to the
above respectively in regard to
programs with file names.

Erases a program in the presently
specified program area.

Clears the entire RAM area.

318

6-1 PB-770 COMMAND TABLE

Protects PASS PASS "KEY"
144 program.

Specifies a PROG PROG 2
146 program area.

Starts RUN RUN
program
execution.

147

RUN 100

Stores pro- SAVE SAVE
grams to a
cassette tape.

SAVE ALL

SAVE.A

SAVE, D,
148 3000,3999

Sets a password named "KEY."

Specifies the program area 2.

Starts the execution of a program
from the beginning of the presently
specified program area.

Starts the execution of a program
from line 100.

Stores the program in the presently
specified program area on a cassette
tape in the internal code format.

Stores all programs in all program
areas on a cassette tape in the
internal code format.

Stores the program in the presently
specified program area on a cassette
tape in the ASCII code format.

Stores internal code format data on
a cassette tape from address 3000
(10) to 3999(10).
* (10) indicates decimal values

SAVE "ABC"

SAVE ALL
"CASIO"

SAVE
''TEST", A

SAVE "PB", D,
3000,3999

Displays SYSTEM SYSTEM
status of 151
program areas.

Checks VERIFY VERIFY
programs
stored on a

VERIFY
153

cassette tape.
"ABC"

as opposed to hexadecimal values.

Perform functions similar to the
above respectively in regard to
programs with file names.

Displays pro9ram area status,
ANGLE setting, memory capacity,
remaining number of bytes, and
data area starting address.

Performs a parity check of the pro-
gram file which appears first.

Performs a parity check of the pro-
gram with a specified file name.

319

CHAPTER 6 REFERENCE MA TE RIAL

6-1-8 Program Commands

Specifies ANGLE ANGLE 0
angle unit. ANGLE 1 154

ANGLE 2

Generates BEEP BEEP
buzzer sound.

BEEP 0 155

BEEP 1

Reads and CHAIN CHAIN
executes

156 program. CHAIN "XYZ"

Clears all CLEAR CLEAR
variables.

CLEAR
Specifies the

4000 158
starting add-
ress of the
data area.

Clears display CLS CLS
161

screen.

Stores data. DATA DATA 1,2,3 205

Declares DIM DIMA(3I
array.

DIM B (2, 31

DIMC! (41

DIM D! (3,41

DIME$ (51 162

DIM F$ (4,51

DIM G$ (21*3

DIM
H$ (4, 51*6

Draws point DRAW DRAW (0,01
and straight DRAW 167
line.

(1, 01-(5, 101

Specifies degrees.

Specifies radians.

Specifies grads.

Same as BEEP 0.

Generates a low pitched beep.

Generates a high pitched beep.

Loads and executes the PF B that
first appears.

Loads and executes the program
with a specified file name.

Clears al I variables.

Clears al I variables and sets up a data
area from address 4000(10).

Clears the entire screen and moves
the cursor to the home position.

Stores data to be referenced by the
READ statement.

Declares a one-dimensional single-
precision numerical array.

Declares a two-dimensional single-
precision numerical array.

Declares a one-dimensional half-
precision numerical array.

Declares a two-dimensional half-
precision numerical array.

Declares a one-dimensional fixed-
length character array.

Declares a two-dimensional fixed-
length character array.

Declares a one-dimensional defined-
length character array and specifies
3 as the character length.

Declares a two-dimensional defined-
length character array and specifies
6 as the character length.

Draws a point at coordinates (0, 0).

Draws a straight line from coordi-
nates (1, 0) to (5, 101.

320

6-1 PB-770 COMMAND TABLE

Erases point DRAWC DRAWC (0,0)
and straight
line.

DRAWC
167

(1, 0)-(5, 10)

Terminates END END
program 170
execution.

Releases ERASE ERASE A
171 array name.

Loop FOR FORI=5
(repeat). TO T020

STEP STEP 0.5 172
l l

NEXT NEXTI

Reads GET GET A
variable data
from cassette 177

tape. GET
"MAX" B

Jumps to GOSUB GOSUB 100
subroutine.

GOSUB 180

PROG 3

End of RETURN RETURN 180
subroutine.

Unconditional GOTO GOTO 500
jump.

GOTO 184

PROG 5

Conditional IF~ IF I >9
jump. THEN~ THEN 50 186

ELSE~ ELSE 80

Data input INPUT INPUT S
from
keyboard.

INPUT
"NAME", T$ 189

INPUT
"NAME"; U$

Assigns data LET LET A=B
195 to variable.

Specifies LOCATE LOCATE 2,3
cursor

Erases the point at coordinates
(el, el).

Erases the straight line between
coordinates (1, el) and (5, lel).

Terminates the execution of a
program.

Releases the definition of registered
variable A or array variable A.

Repeatedly performs the processing
between FOR and NEXT while in-
crementing the value of variable I
by el.5 from 5 to 2el.

Reads the variable data that first
appears.

Reads the variable data having a file
name "MAX."

Jumps to the subroutine in line 1 elel.

Jumps to the subroutine in program
area 3.

Returns to the command following
the GOSUB statement.

Jumps to line 5el0.

Jumps to program area 5.

Jumps to line 5el if I is greater than
9; otherwise, jumps to line Bel.

Displays a ? , then waits for data to
be entered in S.

Displays NAME, then waits for data
to be entered in T$.

Displays NAME?, then waits for
data to be entered in U $.

Assigns B to A.

Specifies coordinates (2, 3) as the
cursor position. 196

position.

321

CHAPTER 6 REFERENCE MATERIAL

Writes data POKE POKE
to a memory

3500, 10
197

address.

Displays PRINT PRINT C, D
data.

PRINT C; D
198

PRINT AB

Prints data. LPRINT LPRINT C, D

198
LPRINT C; D

Stores PUT PUT A
variable data
on cassette PUT 203
tape. "DATA" A

Reads stored READ READ X
205 data.

Remark REM REM*** 209

Specifies RESTORE RESTORE
sequence of
execution
of DATA 205

statements. RESTORE 100

Inputs statisti- STAT STATl,2;2
cal data. 268

Clears the STAT STAT CLEAR
statistical CLEAR 269
registers.

Writes the value 10(10) to address
3500(10).

Displays the values of C and D on
separate Ii nes.

Displays the values of C and D
on the same line.

Displays the pattern defined by
AB$.

Prints the values of C and D
on separate I ines.

Prints the values of C and D
on the same line.

Stores data of variable A on cassette
tape.

Stores data of variable A wi•th file
name on cassette tape.

Reads data stored in variable X by
DAT A statement.

Provides a comment in a program.

Reads from the first DAT A state-
ment when executing READ
statement.

Reads from the DAT A statement on
line H>el when executing READ
statement.

Inputs values of x data,y data and
frequency.

Sets contents of CNT, SUMX,
SUMY, SUMX2, SUMY2 and
SUMXY to 0.

Displays the STAT STAT LIST
statistical LIST

Displays contents of CNT, SUMX,
. SUMY, SUMX2, SUMY2 and

269 register
contents.

Prints the sta• STAT STAT LUST
tistical register LUST 269 contents

Halts program STOP STOP
210 execution.

Traces TRON TRON
program 212
execution.

Releases TROFF TROFF

SUMXY.

Outputs contents of CNT, SUMX,
SUMY, SUMX2, SUMY2 and
SUMXY to printer.

Suspends the execution of a
program.

Specifies the trace mode and traces
the status of program execution.

Releases trace mode.
tracing of 212
program
execution.

322

6-2 ERROR MESSAGE TABLE

BS error
(Bad Subscript)

BV error
(Buffer overflow)

DA error
(DAta error)

DD error
(Duplicate
Definition)

FC error
(illegal Function
Call)

• Subscript of an array variable is a
negative value or the value exceeds
255.

Example) DIM A (256)

• Specified numerical value is outside
the argument range.
Example) The POINT function has

the following argumentranges:
0 � X � 159 and 0 � Y � 31

But the specified numerical value
is outside this range.

• An overflow of the input or output
buffer.

• A READ statement or GET state­
ment was executed even though
there is no data to read.

• Arrays having the same array name
and a different subscript were
doubly defined.

Example) The following array
variable declarations by a DIM
statement cause a DD error
DIM A(1), A(2, 3)
DIM A! (1), A!(2, 3)
DIM A$(1), A$(2, 31
DIM A$(1)*20,

A$(2, 3)*20
DIM A$(1)*20,

A$(2, 3)*20

• An attempt was made to execute any
of the following manual commands
in a program:

CONT, PASS, RUN, EDIT,
DELETE

• An attempt was made to execute any
of the following program commands
manually:

END, LET, REM, STOP, LOCATE,
DRAW, DRAWC, GOTO, GOSUB,
RETURN, INPUT, DATA, READ,
RESTORE, FOR~NEXT,
IF~THEN~ELSE~

• A CONT command was used when
program execution could not be
resumed.

323

• Change the value of subscript
to a value within the specified
range. When the subscript is a
variable, check the assigned
value.

• Re-specify the subscript within
the specified argument range.

• Each operation or program
statement cannot exceed 79
characters in length.

• Check the relation between the
READ and DAT A statements.
Ensure that there is data for
each READ.

• Check the variable on the line
in which an error has occurred.
Also check for subscripts having
the same array name. Change
either of the array names and
reorganize the program.

• Input CLEAR or ERASE before
the DIM statement or execute it
manually to clear the array.

• Remove the incorrect com­
mand from the program.

• Execute the command with a
line number attached.

• Press the � key. Then either
re-execute the program from
the beginning or, if the stopped
line is known, re-execute the
program from the line next to
the stopped line by "RUN line
number".

CHAPTER 6 REFERENCE MA TE RIAL

FO error
(NEXT without
FOr)

GS error
(RETURN
without GoSub)

MA error
(MAthematical
error)

NO error
(Nesting
Overflow)

NR error
(device Not
Ready)

OM error
(Out of Memory)

OV error
(OVerflow error)

• FOR statement without corre­
sponding NEXT statement.

• RETURN statement without corre­
sponding GOSUB statement.

• An arithmetic operation involving
numerical values or numerical func­
tions is uncertain or impossible.

Example) Division by el.

• The number of nesting levels ex­
ceeded the specified limit.

Example) GOSUB~RETURN
Max. 12 levels

FOR~NEXT
Max. 6 levels

• 1/0 device is not correctly con­
nected.

Example) No magnetic tape
recorder is connected.

• RAM capacity is insufficient.
• Insufficient number of bytes

required for variable or PRINT
(LPRINT) in the work area.
Example) 5 bytes remains.

0$="12345"
PRINT "12345"

• Bad specified address location
by the CLEAR statement.

• The result of an operation or the
numerical value entered exceeds
1 ei•••.

324

• Check the nesting structure.

• Check the nesting structure in
the GOSUB statement, and
clearly distinguish between the
main routine and the sub­
routine.

• Check the numerical expression
on the line in which an error
has occurred. Also check the
value of the any variables.

• Check the nesting structure and
reduce the nesting level within
the allowable range.

• Check that the relevant device
is properly connected and
switched on.

• Delete unnecessary programs.

Decrease the size of the data area
using the CLEAR command.

Expand memory capacity using
RAM expansion pack (s).

Confirm the number of remain­
ing bytes using the SYSTEM
command.

• Use a higher address in the
CLEAR command and
decrease the size of the
data area.

• Check the numerical expression
in the line in which error
occurred.
Insert a PRINT statement in
the program to check the value
of the variable.

PR error
(PRotected errorl

RW error
(Read Write errorl

SN error
(SyNtax errorl

SO error
(Stack Over error)

ST error
(STring error)

• An attempt was made to execute
any of the following commands
which cannot be used with a pro­
gram having a password:

DELETE, LIST, LUST, NEW,
EDIT

• An attempt was made to add a new
line to, or delete a line from, a pro­
gram having a password.

• A different password was entered.

• An attempt was made to load a pro­
gram whose password is different
from the PB-770 password.

• Parity error during execution of a
LOAD or VERIFY command.

• Printer function is not activated.

• Command format error.

• The line number has a fraction.

• An array having three or more di­
mensions was declared.

• Numerical value stack exceeds
8 levels.

• Operator stack exceeds 20 levels.

• Character stack exceeds 10 levels.

• An attempt was made to assign a
character string whose length ex­
ceeds the allowable character vari­
able length.

The allowable character variable
length is as follows:
- Fixed character variable

Max. 7 characters
- Registered character variable

Max. 16 characters
- Fixed-length character array

variable Max. 16 characters
- Defined-length character array

variable Max. 79 characters

325

6-2 ERROR MESSAGE TABLE

• Re-enter the password, release
the locked condition, and
execute the program.

• Input the correct password.

• Release the PB-770 password
before loading. In this case,
the newly loaded password be­
comes the PB-770 password.

• Store the program again
using the SAVE command.

• Activate the printer function.

• Use the EDIT command to call
the Ii ne where the error has
occurred and correct the line.

• Correct the line number.

• The number of dimensions
must not exceed 2.

• Simplify or divide the numeri­
cal expression so that the stack
level can fall within the speci­
fied range.

• Simplify or divide the charac­
ter expression so that the stack
level can fall within the speci­
fied range.

• Change the variable to another
variable that can contain more
characters.
Decrease the number of charac­
ters of the character string to be
assigned to the variable.
Be careful when concatenating
character strings.

CHAPTER 6 REFERENCE MATERIAL

TM error
(Type
Missmatch)

UL error
(Undefined Line
number)

UV error
(Undefined
Variable)

VA error
(VAriable error)

• In an assignment statement, the left
and right sides are of different
variable types.

• The argument types do not match
during an assignment.

• The specified line number does not
exist in an IF~THEN, GOTO or
GOSUB statement.

• No program exists in the program
area specified by a GOTO or GOSUB
statement.

• Undefined variable used.

• Array variable used without
declaring it using DIM statement.

• 'subscript of an array variable
exceeds the range specified by
DIM.

• An attempt was made to register
more than 411l variables.

326

• Both the left and right sides of
an assignment statement must
be either numerical variables or
character variables.

• Assign a numerical value to a
numerical variable, and a char­
acter string to a character
variable.

• Create a line number to which
a jump is to be made or change
the specified line number to
which a jump is to be made.

• Create a program area to which
a jump is to be made, or change
the location to which a jump is
to be made.

• Check the initial value of
variable.

• Declare the array by the DIM
statement at the beginning of
the program.

• Change the size of the subscript
within the specified range.

• Up to 411) registered and array
variables can be used. Check
the variable names by LISTV,
and delete unnecessary variable
names by CLEAR or ERASE.

6-3 CHARACTER CODE TABLE

327

SPECIFICATIONS

■ Type

PB-770

■ Fundamental calculation functions

Negative numbers, exponentials, parenthetical addition/subtraction/multiplication/
division (with priority sequence judgement function - true algebraic logic), MOD .

■ Commands

AUTO, CONT, DELETE, EDIT, LIST, LLIST, LOAD, NEW, NEW ALL, PASS,
PROG, RUN, SAVE, SYSTEM, VERIFY, ANGLE, BEEP, CHAIN, CLEAR, CLS,
DIM, DRAW, DRAWC, END, ERASE, FOR-TO-STEP, NEXT, GET, GOSUB,
RETURN, GOTO, IF-THEN-ELSE, INPUT, LET, LOCATE, POKE, PRINT,
LPRINT, PUT, READ, DATA, RESTORE, REM, STOP, TRON, TROFF.
Statistical commands - STAT, STAT CLEAR, STAT LIST, STAT LLIST.

• Functions

SIN, COS, TAN, ASN, ACS, ATN, HYPSIN, HYPCOS, HYPTAN, HYPASN,
HYPACS, HYPATN, SQR, LOG, LGT, EXP, ABS, INT, FRAC, SGN, ROUND, Pl,
RND, DEG, PEEK, ASC, CHR$, VAL, STR$, LEFT$, RIGHT$, MID$, LEN,
INKEY$, OMS$, HEX$, TAB, USING, POINT, &H.
Statistical functions - CNT, COR, SUMX, SUMY, SUMX2, SUMY2, SUMXY,

MEANX, MEANY, SDX, SDY, SDXN, SDYN, EOX,
EOY, LRA, LRB.

■Calculation range

±1 X 10-99 ~ ±9.999999999 X 1099

(Internal calculation uses 12-digit mantissa.)

• Program language

BASIC

■Memory capacity for programs
RAM: Standard 8K bytes, expandable up to 32K bytes.

(Including 1321 bytes in system area.)
ROM: Approx. 32K bytes.

• Number of program areas

Maximum 10 (P0 - P9)

• Number of stacks

Subroutine
FOR-NEXT loop
Numerical values
Operators

12 levels
6 levels
8 levels

20 levels

328

■Display system

Liquid crystal display (20 digits x 4 lines)

• Display elements

32 x 160 dots (20 x 4 characters)

SPECIF/CATIONS

■Display contents

10-digit mantissa+ 2-digit exponent

■Main component

LSI

■Power consumption

O.lW

• Power source

Main: 4 AA size batteries.
Sub (for RAM backup): 1 lithium battery (CR 1220).

• Battery I ife

Main: Approximately 100 hours on type SUM-3 (continuous operation).
Sub: (see page 15)

■Auto power off

Power is automatically turned off approximately 6 minutes after last operation.

■Ambient temperature range
°

0 C to 40
°

C (32
°

F to 104
°

F)

■ Dimensions

23mmH x 200mmW x 88mmD (½"H x 7 ½"W x 3½"D)

■Weight

315 g (11.1 oz) including batteries.

329

INDEX

A 270

ABS 228 209

Absolute value 228 223

ACS 219 47,128,186

&H 275 186

ANGLE 154,214 131

Array variable 67 78

ASC 243 90,270

ASCII code 243 217

ASN 219

Assignment 37

ATN 219 205

130 159

16 40

241

154,216

15 132

223 79,162

34 64

155 22

313 18

69

95

26 259

26 101

23 101,167

156 101, 167

29,62, 79

243,327

31 69,312

122 134

29 24,134

265 48,170

62, 192 18,38

93,245 87,274

158 87,274

56,161 171

270 323

AUTO

Auto power off

B

Backup battery

Base of a natural logarithm

BASIC

BEEP

Built-in functions

C

Calculation precision

Calculation priority

CAPS

CHAIN

Character array variable

Character code

Character coordinates

Character mode specification

Character registered variable

Character string format specification

Character variable

CHA$

CLEAR

CLS

CNT

Colon(:) 54

COR

Comment statement

Common logarithm

Conditional expression

Conditional jump

CONT

Control variables

Correlation coefficient

cos

D

DATA

Data area

Debug

DEG

DEGREE

DELETE

DIM

Dimension

Direct mode

Display contrast control

Display of number of digits

Displaying patterns

OMS$

Dot

DRAW

DRAWC

E

E

EDIT

Editing key

END

Enter key

EOX

EOY

ERASE

Error message

EXP 226

330

INDEX

91 J

Jump 47,180,184

150

128

L

LEFT$ 252

172 256

29 195

59,172

LEN

LET

LGT 223

263 87,274

232 87,274

24 137

137

139

177 196

60,180 223

48,184 91

154,215 172

31,101 122,198

93 87,274

122 87,274

28,69 15

260 180

221 60

221 87,272

221 87,272

221 44

221 254

221 26,27,312

54

47,186

172 223

45 181

257 143

43,46, 189 143

Exponential regression

File attributes

File name

Final value

Fixed variables

FOR~TO~STEP/NEXT

Format character string

FRAC

Function mode

G

GET

GOSUB

GOTO

GRAD

Graphic coordinates

Graphic characters

Graphic mode specification

H

Half-precision

HEX$

HYPACS

HYPASN

HYPATN

HYPCOS

HYPSIN

HYPTAN

I

IF~THEN~ELSE

Increment

Initialization

INKEY$

INPUT

INT 230 164

Linear regression coefficient

Linear regression constant term

LIST

LUST

LOAD

LOCATE

LOG

Logarithmic regression

Loop

LPRINT

LRA

LRB

M

Main power source

Main program

Main routine

MEANX

MEANY

Message

MID$

MOD

Multistatement

N

Natural logarithm

Nesting

NEW

NEWALL

Null-string

Number of bytes used 32

331

F

67 RND 239

67 236

264 147

29

29,62, 192

148

53

INDEX

Numerical array

Numerical array variable

Numerical format specification

Numerical registered variable

Numerical variable

0

One-dimensional arrays 65 87,273

87,273

87,273

144 87,273

141 46,48

97 234

242 23

238 214

123 28,69

100 222

101,117,266 160

197 88,268

92 88,269

43,48, 198 87,269

202 87,269

146 210

41 250

52 60,180

p

PASS

Password

Pattern cursor

PEEK

Pl

Plotter command

Plotter-printer with cassette interface

POINT

POKE

Power regression

PRINT

PRINT command expanded function

PROG

Program areas

Program modification

PUT 203 87,271

87, 271

87,271

154,216 87,271

17 87,271

239 55,151

205

30,190

28 53,261

45,209 218

205 35

180 212

18,38 212

R

RADIAN

RAM expansion pack

Random number

READ

Registered variable

Relational operators

REM

RESTORE

RETURN

Return key

RIGHT$ 253

ROUND

RUN

s

SAVE

Screen display control

SDX

SDXN

SDY

SDYN

Semi colon (;)

SGN

Shift mode

SIN

Single-precision

SOR

Starting address

STAT

STAT CLEAR

STAT LIST

STAT LLIST

STOP

STA$

Subroutine

SUMX

SUMX2

SUMXY

SUMY

SUMY2

SYSTEM

T

TAB

TAN

Ten keys

Trace mode

TROFF

TRON 212

332

INDEX

66

184

54,263

247

153

Two-dimensional array

u

Unconditional jump

USING

V

VAL

VERIFY

Wait loop 175

333

GUIDELINES LAID DOWN BY FCC RULES FOR USE OF THE UNIT IN THE U.S.A. (not
applicable to other areas).

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in
strict accordance with the manufacturer's instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installation. However, there is no guarantee
that interference will not occur in a particular installation. If this equipment does cause interference to
radio or television reception, which can be determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the following measures:

reorient the receiving antenna
relocate the computer with respect to the receiver
move the computer away from the receiver
plug the computer into a different outlet so that computer and receiver are on different branch
circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional
suggestions. The user may find the following booklet prepared by the Federal Communications Commission
helpful: "How to Identify and Resolve Radio-TV Interference Problems" This booklet is available from the
US Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.

334

Epilogue

This manual overhaul is dedicated to Alex Istomin, aka HWR0, you were a giant,
my friend.

I decided to scan in this manual because there wasn't one available Online and I
thought I might be able to give something back to the Pocket Computer
community that has given me so much over the years. This was a labour in love,
completed between March 15 to July 27, 2024. It was scanned in page by page
using a Brother DCP-135C all-in-one printer/scanner (Thank you VueScan for still
supporting my ancient scanner!), edited in GIMP and OCR-ed with Acrobat Pro. I
completely re-drew all tables and about 90% of the graphics from scratch, corrected
obvious errors (spelling, code and others). I added a page on character coding for
Kana mode PB-770s (Japanese models, or modded European ones). The TOC, index
and hopefully all keyword references have been linked. I'll upload two versions, a
colour scan (cover only) and a Kindle/bandwidth friendly monochrome version. If
you find any huge errors that might have slipped in during editing, please let me
know. Most of you know how to get in touch with me.

-R. Swartz 2024

335

	Front cover
	Title page
	Introduction
	TOC I
	TOC II
	TOC III
	TOC IV
	TOC V
	Outline
	Chapter 1 - General Guide
	1-1 Prior to Operation
	1-2 System Configuration and Peripherals
	1-3 Battery Maintenance
	1-4 RAM Expansion Pack
	1-5 Nomenclature and Operation
	1-6 Test Operation

	Chapter 2 - Key Operation And Display
	2-1 Key Functions in Direct Mode
	2-2 Key Functions in Shift Mode
	2-3 Caps Mode
	2-4 Key Functions in Function Mode
	2-5 Editing And Special Key Functions
	2-5-1 Key Functions in Kana Mode
	2-6 Calculation Functions
	2-7 Variables
	2-8 Display Screen
	2-9 Number of Bytes used for Variables

	Chapter 3 - BASIC Reference
	3-1 Introduction to Basic
	3-2 Using the Keys
	3-3 Variables and Assignment
	3-4 Using Variables
	3-5 Program Entry
	3-6 BASIC Programming [1]
	3-7 BASIC Programming [2]
	3-8 Program Execution
	3-9 Display Screen Configuration
	3-10 Repeat Program Execution
	3-11 Sum Total Program
	3-12 Character Variables
	3-13 What Is a Dimension
	3-14 Numerical Array Variables
	3-15 Numerical Array Programming
	3-16 Character Array Variables
	3-17 Combination of String and Numerical Arrays
	3-18 Statistical Functions
	3-19 Using Graphic Characters
	3-20 Displaying Patterns
	3-21 PB-770 Graphic Functions
	3-22 Graphic Commands and Screen Coordinates
	3-23 Drawing a Curve
	3-24 Drawing a Line Graph
	3-25 Preparation For Drawing a Bar Graph
	3-26 Two Examples of Bar Graph Programs
	3-27 Animation Drawing
	3-28 Game Applications
	3-29 Drawing a Pattern With the Plotter-Printer
	3-30 Using the Plotter
	3-31 Using PB-700 Programs

	Preface to Chapter 4
	Chapter 4 - Command Reference
	4-1 Manual Commands
	AUTO
	CONT
	DELETE
	EDIT
	LIST / LLIST
	LOAD
	NEW / NEW ALL
	PASS
	PROG
	RUN
	SAVE
	SYSTEM
	VERIFY

	4-2 Program Commands
	ANGLE
	BEEP
	CHAIN
	CLEAR
	CLS
	DIM
	DRAW / DRAWC
	END
	ERASE
	FOR ~ TO ~ STEP / NEXT
	GET
	GOSUB / RETURN
	GOTO
	IF ~ THEN ~ ELSE
	INPUT
	LET
	LOCATE
	POKE
	PRINT / LPRINT
	PUT
	READ / DATA / RESTORE
	CAUTION DATA Statements

	REM
	STOP
	TRON / TROFF

	4-3 Numerical Functions
	SIN
	COS
	TAN
	ASN, ACS, ATN
	HYPSIN/HYPCOS/HYPTAN
	HYPASN/HYPACS/HYPATN
	SQR
	LOG, LGT
	EXP
	ABS
	INT
	FRAC
	SGN
	ROUND
	PI
	RND
	DEG
	PEEK

	4-4 Character Functions
	ASC
	CHR$
	VAL
	STR$
	LEFT$
	RIGHT$
	MID$
	LEN
	INKEY$
	DMS$
	HEX$

	4-5 Display Functions
	TAB
	USING
	POINT

	4-6 Statistical Commands / Functions
	STAT
	STAT CLEAR
	STAT LIST / STAT LLIST
	CNT
	COR
	SUMX / SUMY / SUMX2 / SUMY2 / SUMXY
	MEANX / MEANY
	SDX / SDY / SDXN / SDYN
	EOX / EOY
	LRA / LRB

	4-7 Other
	&H

	Chapter 5 - Program Library
	Stock Price Management And Proper Selling/Buying Prices
	Telephone Directory
	Cross Total
	Graph Making Program

	Chapter 6 - Reference Material
	6-1 PB-770 Command Table
	6-1-1 Operational Symbols
	6-1-2 Special Character
	6-1-3 Built-in Functions
	6-1-4 Character Functions
	6-1-5 Display Functions
	6-1-6 Statistical Functions
	6-1-7 Manual Commands
	6-1-8 Program Commands

	6-2 Error Message Table
	6-3 Character Code Table
	Specifications

	Index I
	Index II
	Index III
	Index IV
	FCC Guidelines
	Epilogue
	Back Cover

