PROGRAMMABLE CALCULATOR

CASIOFX-702P

INSTRUCTION MANUAL

First of all, we would like to thank you very much for purchasing this product. This instrument is a high
performance, programmable calculator which incorporates microcircuitry to provide for repetitious or
complex calculation. The most important feature of this instrument is that it uses BASIC program language.
This provides a conversation type language for problem solving. Operation is easy, even for a beginner.
Additionally, programming is simple using one key commands which permit highly efficient keying.

This instrument’s calculation management functions are generally separated as follows.

1. Manual Calculation

2. Program Calculation

It not only performs high level program calculations like a computer but is also designed for easy operation

as a scientific calculator.

CONTENTS

[o T g o 0 - 3
Use Precautions
Power Supply and Battery Replacement

Chapter 1 Each Section’s Nomenclature and Operationc.cuviueu... 4
1-1 Each Section’s Nomenclaturettt ittt ineeeeennneenns 4
1-2 HowtoRead the Displayottt it ittt ittt ettt et oneeeenennnens 7
T-3 Contrast AdJUSEMEeNT . . o . o v it vttt ittt ettt it ettt e e e et et e e, 7
Chapter 2 Prior to Beginning Calculationttt iinnrennnn 8
2-1 Calculation Priority SequUencCet iiit ittt eens e ennennnens 8
2-2 Input/Output Number of Units and Calculation Numberof Digits 8
2-3 BasicCalculationt et e et et e e e 9

2-3-1 Calculation Symbols and Function Commands, 9

2-3-2 Previous Calculation Result Calloutttt ettt e 10

2-3-3 Error Messagettt e e e e e e e e e e e e e e 10
24 Key Operation it ittt ittt e e e e et et e e e e e 11
2-5 Memory EXpansionttt i e et e et 12
2-6 Auto Power Off e e e e e e e e e e e e 13
2-7 Excess NUMbBersttt ittt it ettt ettt et ettt et 13

Chapter 3 Manual Calculation iiiiitiiit it iensrntnneeennnnns 14

3-1 Explanationof Manual Calculationt it oo sosennensnnnes 14
3-2 Manual Calculation Operationttt ieeenennntnneennnneess 14
3-3 Manual Calculation Examplesttt ittt nmenetaneeeansanans 15
3-3-1 Fundamental Calculations v i i it ittt et e ittt e st e te e e e e 15
3-3-2 Function Calculations e e e e e e e e e e e 17
3-3-3 Statistical Calculations it ittt it e e e e e e e e 21
Chapter 4 Program Calculation ittt ennnannns 25
4-1 ProgramOutlinettt ittt 25
4-2 Program Fundamentalsttt eennnerrnerenarennsas 28
4-3 Program Writingand Executionc..t ittt innerariannannans 29
4-4 Program Edit it e e et e e e e 32
45 ProgramCommandsttt erieienrnnareeeateaeaaannas 39
4-5-1 Jumpand Loop . .o ittt e e e e et e e i i e e 39
B5-2 AITBYS + ot v ettt e e e e e et e e e e e et e 53
4-5-3 Input/Output Commandst ittt ittt e e e 57
4-B-4 Character FUNCLIONS i i it it i e et e e e et et et e e s et et e e 63
4-55 SUDFOULINES .« & v v vttt ettt e e et e e ettt e e e e 64
4-5-6 General FUNCLIONS . . . 0 ittt it i it it et e et et e et e e e e e e i e 68
4-5-7 Statistical PrOCESSING -« o vt v vt vt et e e e e e e e 69
A-5-8 PassWord . oo vttt it e e e e e e e e e e 74
4-59 Option SPeCifiCations . . v v v v it it e e e e 75
Error Message Listttt ittt nnnnanaaaeananannns 79
Program Command List it inriniereennneeenestonaeenrenns 80
P i CatioNS . .. L e e e e e 82

Th

is calculator is brought to you as a result of our highly developed electronic technology. Strict quality

control procedures and a rigid inspection process were employed in its production. Please follow the
precautions below to ensure long equipment life.

Th

Use Precautions

This calculator is composed of precision electronic parts. Never try to take it apart. Avoid dropping or
throwing. Do not permit it to undergo extreme temperature variations. Do not store or leave in any
location where there is dampness, high temperature or dust. During periods of low temperature, the
display response may be slower or there may be no display. Normal display will resume when the
temperature returns to normal.

Do not use any other equipments than the optional ones.

While the calculator is performing calculations, a "=’ will be displayed. Key operation during this time
will not be effective except for one section so please pay attention to the display at all times and press
the keys carefully.

Concerning the batteries, even when the calculator is not used to any great extent, please change the
batteries every 2 vyears. If worn out batteries are used, they may leak and cause damage to the
instrument. Never leave worn out batteries in the instrument.

To clean the calculator, use a soft, dry cloth or a damp cloth and mild detergent to wipe it off. Never use
paint thinner or benzine.

In case of malfunction, contact the store where it was purchased or a nearby dealer.

Prior to seeking maintenance, please read the instruction manual again and also check the power supply

as well as program or operational error.

Power Supply and Battery Replacement
is calculator uses 2 lithium batteries (CR2032).

When the display is still weak even though the contrast control is turned to full strength, this indicates that
the batteries are run down. In this case, replace the batteries as shown in the figure below. If the calculator
is used with weak batteries, this may cause errors.

Even if the calculator is functioning normally, be sure to replace the batteries every 2 years.

(m
(2)

(3

(4)

{5)

2

Be
rep

Turn the power switch to ON.

!-————Battery cover

How to replace the batteries. c
After turning the power switch OFF, slide the battery /
cover and remove from the rear of the instrument.

Push the battery retainer in the direction of the arrow
and remove. '

Remove the two run down batteries (this will be easier
if the instrument is tapped with the battery compart-
ment facing downward).

If the surface of the new batteries contains white
powder or dust it may cause a bad contact. Wipe them -
off with a dry cloth. Install the batteries with the
positive side (P facing up.

Press batteries in with the battery retainer and slide the
battery cover closed. ﬂ@

t

—Battery retainer
I

L T
| I

X

sure to perform the following operations after battery

lacement. J

CLR ALL {9 &
) () 1) & P B (@ 69 VAC @

Chapter E Py

r:;Each Sectlons Nomenclature
..and Operatlon '

r)
" aRc e WRY DEG TRACE PRT - °N7*©
@ READY PR: Fu-7agp 1680

[WGDE]» [G] RUN [TIWRT [Z]1TRACE ON [3] TRACE OFF [37]0EG [5]RAD [E)GRA [T}PRT ON [E}PRT OFF

ARC HYP SIN CO8 TAN < > = INS —'

O1E F (D (3)G)|D e 8 e s
FOR T0 STEP NEXT PRT
LOG ———— LN ———— EXP ———— SQR —~——— SGN ———— INT FRAC

| SRR

B /4 0 5

P4 PS5 P& 3

BBBBGIB @
7 NOME-

HBBB

PO RAN 5 ?

CIEIEEE)
—®
(® Display Contrast Dial @ Adaptor Connector @ Keyboard
(@ Display Window ® Alphabet Keys Execute Key
® Function Keys () Power Switch (@ Numerical Keys and Decimal Key

1-1 ‘Each Section’s Nomenclature

Each key has 3 separate operations.
Press the keys directly for the function printed on the key. Press{f1) and then the key for the function
printed above the key. Press and then the key for the function printed below the key.

Example
Log - - 1st function mode
..... direct mode
IF 2nd function mode

1st Function Key
If this key is pressed the 1st function mode is selected (“F1'* is displayed} and the 1st function printed
above each key can be used.

{F2) 2nd Function Key
If this key is pressed the 2nd function mode is selected ("'F2" is displayed) and the 2nd function printed
below each key can be used.

(8 Mode Key
Calculator situation and unit of angular measure are designated by pressing the key and numerical

keys (@] through (8] .

..... “RUN" is displayed. Manual and program calculation can be performed.
... “WRT" is displayed. Program write and checking and editing can be performed.
&..... "“TRACE" is displayed. Execution trace can be performed. (See page 38 for details.)

(3 When “TRACE" is displayed, it will be erased. Execution trace function will be cancelled.
_4__

(@].... "DEG" is displayed. Unit of angular measure designation will be ‘‘degree’’.
(8).... “RAD" is displayed. Unit of angular measure designation will be ‘‘radian”’.

(e].... "GRA" is displayed. Unit of angular measure designation will be “‘gradient’’.
(@.... "PRT" is displayed. If a printer is connected, print output can be accomplished. (See page 78
for details.)

(). ... When “PRT" is displayed, it will be erased and print output will be cancelled.

All Clear Key

® When keying in data, the display will be completely cleared and all characters input up to that time will
be completely cancelled.

® |f pressed during program run, program run will stop and return to input ready.

® When an error message is displayed, press to cancel error.

® When AUTO POWER OFF (automatic power saving function, refer to page 13) is in operation and the
display goes OFF, press to turn power ON again.

Clear Key (input character deletion key)/Insert Key

® When keying in data, the character just prior to the cursor will be cancelled. The characters to the right
of the cursor will move one position to the left.)

® |n the 1st function mode, this key becomes the insert key. When it is pressed, the character above the
cursor and those to the right of the cursor will be moved one space to the right and a new character can

be inserted.

B3 Stop Key
If pressed during program run, “STOP’ will be displayed. Program run will stop at the end of one line. If

pressed during execution trace, program number, line number and program content will be displayed.

WLl Continue Key
If pressed when program has been stopped by the key, or stop sentence, program run will begin again

from the next sentence. During execution trace, press to advance to the next sentence.

Stat Key/Delete Key
® Press this key to input data for performing statistical calculations.
Example: Standard deviation X . Regression calculation x,y .
® |n the 1st function mode, press this key to delete data when performing statistical calculations.

ASTAT

Answer Key/Answer Stat Key
® [or manual or program calculation, press this key to recall the previous calculation result.
® |n the 1st function mode, press this key to display the result of a statistical calculation (number of data,

sum of X, sum of ¥, square sum of x, square sum of ¥ and product sum of x-y).
HOME
Cursor Key/Home Position Key
® Press this key once to move the cursor one position to the left.
® in the 1st function mode, press to move the cursor to the home position (beneath the first input

character).

Cursor Key
Press this key once to move the cursor one position to the right.

@ Execute Key
® Press this key instead of "’=" to get the result of a manual calculation.
® When in the "WRT'" mode, press this key for program write on a line-by-line basis. Write cannot be

accomplished if this key is not pressed.
® When in the "RUN’"’ mode, press this key to input during program run.

u Comma Key/Statistical Use Memory Clear Key

® Press to write a comma.
® |n the 1st function mode, press to clear statistical use memory.

-5-

Parenthesis Keys/Comparative Keys
® Press these keys at the parantheses positions when performing parenthesis calculations.
® |n the 1st function mode, press these keys for comparative relationships.

[>k | = Calculation Command Keys/Comparative Keys/Character Keys
o BIBEI B Symbols for addition, subtraction, multiplication and division. Press for desired function.

Press to obtain powers of numbers.
® [n the Tst function mode, press €3 for comparative relationships. Press gm to get factorial results.

Press ga to write a question mark.

6 é é Numerical Keys/Program Number Keys
4 ® Press to enter numbers for calculation. Press (-] to insert a decimal point.
® |n the 1st function mode, these keys are program number designators. When

P4 PS P6

n B B writing, program can be started.
P1 P2 P3

(1 2

RAN %

ol
Los LN EXE SoR ScN INT FRAC Alphabet Keys/One Key Command Keys

@ @ @ @ e When writing programs or when writing commands or
5] BND DEG(N CSR KEY function commands, if these keys are pressed, alpha-

Al G LE| "/ E
@ [D @ @ @m betical letters will be displayed.

PRC DMS SET VAC STOP El . .
sDx sov SOXN In the 1st function mode, one key function com-

SDYN LRA LR8 COR []
@ @ @ @ mands will be displayed.

Yoo tov In the 2nd function mode, one key program com-

EOX v " []
mands will be displayed.
RUN LIST

(=] Equal Key
Press this key to write substitution symbol or equal symbol.

Space Key

Press to insert a space between characters during input.

@ Strings Key/One Key Command Key

® Press this key at the beginning and end of character strings when inputting or displaying character
constants.

® |n the 1st function mode, one key function commands will be displayed.

® |n the 2nd function mode, one key program commands will be displayed.

HYP SIN COSs TAN
[_T_E:] @ @ @ Character Keys/One Key Command Keys

® Press to use the symbols written on the keys.
® |n the 1st function mode, one key function commands will be displayed.
® |n the 2nd function mode, one key program commands will be displayed.

| 1-2 How to Read the Display ' ‘]

Dot Matrix Display

Fi F2 ARC HYP RUN WRT STOP DEG RAD GRA TRACE PRT

N saune I j :’ _t
LI R B |

Displays calculation values and results. Each character is composed of dots of 5 wide by 7 high. A
maximum of 20 numbers and characters can be displayed. (Zero is displayed as &1 .) If a formula or
sentence contains more than 20 characters, the numbers or letters will move to the left. A maximum of 62
characters can be input. The 4 positions at the right side of the display show the remaining program steps.
During calculation, a minus sign will be displayed to the right of the 4 digits on the far right side of the
display. Also, units of angular measure, such as “DEG”, “RAD" and “GRA’ or “F1", “F2" (when [Fi or
key is pressed). Also, “ARC", "HYP"" (when & or &B keys are pressed), "RUN"" (RUN mode},
"WRT"” (WRT mode), "TRACE"” (TRACE mode), “PRT” (PRT mode), etc. These symbols will be
displayed for each situation. Also, sexagesimal or alphabetical letters and symbols are displayed as follows.

® Sexagesimal display example

.,
= wunse

7 1
b v e

1-3 Contrast Adjustment — ———— |

Display contrast adjustment is accomplished using the control dial on top of the calculator.

7 [I
- L

l[| o

Ll_ J L | I J T | B .] 1 7 1 T

Turn in the direction of the arrow to strengthen the display and in the opposite direction to weaken the
display. This controls the contrast to compensate for battery strength and also according to personal
viewing preference.

Chapter 2

Prior to Beginning Calculation

Manual calculation and program calculation are performed in the “RUN" mode. (RUN display =)
Units of angular measure display, such as “DEG", "RAD' and “GRA" may be disregarded if the
calculation is not related to angles.

2-1 Calculation Prioﬁty Sequence {True Algebraic Logic)

® This calculator determines the calculation priority automatically and cafculates using that sequence.
Calculation priority sequence is determined as follows.

(@ Functions (sin, cos, tan, etc.) When the priority sequence is the san:"le; it will calculate
(2 Powers, Factorials from the beginning {from the left).-If parentheses are
@ x, = (*,/) used, the calculations contained in-parentheses take
@+, — priority.

2-2 inputlouiptrt Number of Units and Calculation Number of Digits 1

This calculator’s input/output units are composed of 10 mantissa positions and 2 exponent positions. The
range is 1.07° to £9.999999999 x 10*%°.

Number of input/output positions is 10 mantissa positions and 2 exponent positions. However, internal
calculation number of positions and number of stored positions in the memory is 12 mantissa positions and
2 exponent positions. When the input or calculation value is greater than 10 positions, up to 12 positions
will be written. Anything greater will be ignored. Output is 10 mantissa positions.

Example: 1.23456789123x100=| 123.4567891 !

When the calculation result is greater than 10 or less than 1073, it will be automatically displayed
-exponentially.

Example: 1234567890x10= [1.23456789e 10]

(The exponential display is displayed foliowing the mantissa display with an exponential sign “E*’.)

Example: 1.234+10000= | 1.234e-04 |

| 2.3 Basic Calculation

1

2-3-1 Calculation Symbols and Function Commands

Using BASIC calculation symbols, + and — symbols are the same as standard symbols for addition and
subtraction but X and / are used for multiplication and division symbols.

For instance:

2+3-4x5+6

is expressed as

2+3-4%5/6

Also, this instrument incorporates the following functions.

Function Name
Trigonometric Function

Inverse Trigonometric Function

Hyperbolic Function

Inverse Hyperbolic Function

Square Root

Exponential Function
Natural Logarithm
Common Logarithm
Factorial

Change to Integer

Cancel Integer Portion
Change to Absolute Value
Change to Symbol

Degrees Minutes Seconds
Degrees Minutes Seconds
Coordinate Conversion
Coordinate Conversion

sinXx

cosX

tanXx

sintx

costx

tan ! x

sinhXx

coshx

tanhXx

sinh ' x

cosh™'x

tanh'x

VX

ex

Inx

logx

x!

INTXx

FRACXx

Ix|

Positive Number = 1
0—~0

Negative Number = —1

(Sexagesimal = Decimatl)

(Decimal = Sexagesimal)

(Rectangular = Polar)

(Polar - Rectangular)

Form
SINXx
COSx
TANX
ASNX
ACSXx
ATNX
HSNx
HCSXx
HTNXx
AHSX
AHCXx
AHTx
SQRXx
EXPx
LNx
LOGx
x!
INTx
FRACx
ABSXx
SGNXx

DEG (x,), 2)
DMSx
RPCx,y
PRCx,y

* X,y coordinates and r, 6 can be substituted for using X, Y variables.

Rounding Off

Random Numbers

Statistical Calculation
Number of Data 7

Standard deviation of X X0,.4
Standard deviation of ¥ ¥0,.4
Standard deviation of X Xo,
Standard deviation of ¥ Yo,
Average of x X
Averageofy ¥V
Sumofx Zx

(10¥ of xis rounded off)

RND (x,y)
RAN #

CNT
SDX
SDY
SDXN
SDYN
MX
MY
SX

[(F &S]
(F@ &1
[E@ &)
[E) & &)
[& &S]
(D &3]
(B &)
[ED & &)
[FD &5 &Y
(B&ESD]
(B &EGS]
&S]
F &)
&)
) &)
F) &]
) el
F &1
ED &5
B @]
(D)

Fi} &1

[E) &
[E &
[F) &
(B &

Sumofy Xy sY -

Sum of x squared Zx? SX2 -
Sum of ¥ squared Z)? SY2 —
Sum of data product Zxy SXY -
Constant term A LRA [F) &
Regression coefficient B ‘ LRB (B &1
Correlation coefficient » COR (F3 &)
Estimated value of x X EOXy [&]
Estimated value of y 9~ EOYx [B) &)

2-3-2 Previous Calculation Result Callout
The result of a manual or program calculation is stored until the next calculation has been executed.
This result can be displayed by pressing the @ key.

Example: 7414+852=1593
2431-1593=838

Operation: OEAEOBEEE 74148562
E5] 1593
REE0 R 2431- 1593
GF 838

Also, the number value displayed following the calculation can be used as is in the next calculation.

Example: (Subsequently to the abolve)
838x2=1676

Operation: 838%2
E5) 1676

2-3-3 Error Message

If the formula or substitute sentence is not written correctly according to BASIC language or if the cal-
culation range is exceeded, an error will occur at the time of run and an error message will be displayed.
The following error messages will be displayed during manual calculation.

LERR -2 ' (sentence structure error)

LERR—3 j (mathematical error)

The following error messages will be displayed during program calculation.

|ERR-2 IN PO-10]
program area line number
(A sentence structure error has occured at line 10 in program area P0)

|[ERR-3 IN P2-20 |

(A mathematical error has occurred at line 20 in program area P2)

Furthermore, for the meaning of the error messages, see Page 79 for the error message list.
* When the calculation range is exceeded (+9.999999999e+99), an overflow condition occurs and an
error message is displayed. Also, below 1.0E—99, an underflow condition occurs and the calculation

result will be “0"'.

L2-4 Key Operation

First, turn the power ON.
“"READY PQ" is displayed and the calculator is ready for input.

1. Key Input
® Alphabetical Input

Example: Input ABC

Operation: @AE)E] l ABC

Example: Input SIN

Operation: BE0Om® (or FI&Y l SIN

* Either one key command or alphabetical command may be used.
® Numerical Input

Example: Input 123

Operation: OEE [123

Example: Input 96.3

Operation: ®EE liG .3

® Symbol Input

Example: [nput $#?

Operation: EEE [i # 7

® [nput of numbers with exponents

Example: Input 7.896 x 1015

Operation: OHEREEGDBE lz . 896156

1
Example: input —2.369 x 107% Fxponential symbol

Operation: QE0REE&A&EEE |-2.369e-45

2. Changing Input Contents (Correction, Deletion, insertion)
® Correction

Move the cursor to the position where the correction is to be made (use). Press the key for the

desired letter, number or symbol.

Example: To change A$ to B$ A$__
Operation: Move the cursor 2 positions to the left. { A%

—

Press the key. [B$
Example: To change "LIST" to “"RUN" LL IST
Operation: Move the cursor 4 positions to the left. ‘ LIST

EEEE =

Press MU or B . | RUN

* In the above example, to move the cursor beneath the first letter, press (E] .

® Deletion

Position the cursor one space to the right of the character to be deleted. Press the key. Each time it
is pressed, the character to the left of the cursor will be deleted.

Example:

Operation:

Example:

Operation:

Example:

Operation:

® Insertion

Move the cursor to the right of the position where the new character is to be inserted. Press

To delete one "'I" from ““SIIN"

Move the cursor one space to the left.
(Use)
Press the key.

To delete “X,"” from “INP X, Y
Move the cursor one space to the left,

(Use (&)

Press . The two characters will
be deleted.

To delete “,B"” from “PRT A, B"

Press (@8 . The two characters will
be deleted.

[STIN_

[STIN

|SIN

[INP X.Y_

[INP X, Y

[INP Y

|PRT A,B_

|PRT A__

time they are pressed, a space will appear. Press the desired key to insert into the space.

Example:

Operation:

Example:
Operation:

Toinsert “$"" into “T = A$" to make it
“T$ = AS”

Move the cursor 3 positions to the left.
(Use)

Press . One space will appear
above the cursor.

Press the (3] key.

To change “PRT X' to “PRT SIN X"

Move the cursor 1 position to the left.
(Use)

Make 3 spaces. (Use Fi¢FIe&SFI&S)
Press (SDM] .

INS

. Each

| T=R$_

LTE_H $

[T_=RA$%$

[T$5ﬁ$

|PRT X__

[PRT X

|[PRT _ X

|PRT SINX

|
|
|
J
|
|
|

2-5 Memory Expansion

|

There are normally 26 memories (variables). At this time there are 1680 'steps. The memory can be ex-
panded up to a maximum of 226 memories. This expansion is accomplished by converting to 10 units
per memory with each having 8 steps.

Number of memories Number of program steps
26 (A~ 2Z) 1680 steps
36 (A~ Z, A0~ A9) priw 1600 steps
46 (A~ Z, A0~ A9, BO ~ B9) 2 1520 steps
56 (A~ Z, A0~ A9, BO ~ B9, CO ~ C9) 2 1440 steps -
226 (A~Z,A0~A9,........... , TO~T9) 80 steps

DEFM command is used to expand the memory. Also, expansion is designated in units of 10 each, with
10 units forming 1 group. To expand to 10, use "“1"". To expand to 50, use '5"".

5

Example: To expand the memory to 56 by increasing 30.
Operation: Performed using RUN mode ((2]} or WRT mode {).

DEFM 3 @ |[VAR: 56 PRG: 1440]
I

I
number of memories number of steps
* DEFM can be input by pressing (0] (€] (F] M) or F2 .

Example: To expand the memory to 166 by increasing 140.

Operation: DEFM 14 &9 l VAR: 166 PRG: 560

* If a large number of programs are already in use, to protect those programs already written, an error
message will appear if the remaining area is insufficient.

ERR-1 | indicates that number of steps is insufficient.

* Since the exclusive character variable ($) is a special memory, it is not counted at the memory capacity
designation.

[2-6 Auto Power OFF

In order to save power when the power switch is left ON, the power will shut off automatically after

approximately 8 minutes {except during program calculation). In this case, turn the power switch ON

again or press the key and the power will come ON again.

* The memory and program contents will not be erased when the power is turned OFF. Angle mode
designation or mode designation (“WRT"', “TRACE"’, “PRT", etc) will all be cancelled.

] 2-7 Excess Numbers

When displaying the results of manual or program calculation, the 11th position can be rounded off or
deleted. This command is performed using “SET’ command.

0 0" for deletion
SET { 5} <5 for rounding off)
Example: 11+3=3.6666..........

Operation: To delete GEDEE
DOBWE® |3.666666666 |

* This deletion is only for the display. The actual internal calculations are performed by rounding off.

(Continuing) ® [3.666666667 |

® Rounding Off

PEDEE
ODEEE |3.666666667]

This SET command automatically becomes rounded off by auto power OFF or power switch OFF.
Calculations in this manual will be performed using “SET 5" (rounded off).

13

Chapter 3

Manual Calculation

3-1 Explanation of Manual Calculation

For manual calculation, calculations are not automatically performed using previously stored formulas
as in program calculation. Operations for moving numbers from right to left, calculating by hand and
cailing out contents of variables are called manual calculations.

r3-2 Manual Calculation Operation R T ﬁJ

® Addition, subtraction, multiplication and division are by true algebraic logic. &3 , & . E3 (X), ()
and (=) are used. The [EXg key is used to obtain calculation results and functions as “'="".

Example: 12+36—-9Xx5+4=36.75
Operation: DEEEERC0EEE | 12+36-9%5/4]

| 36.75 |

m Function calculation includes addition, subtraction, multiplication and division and is the same as
true algebraic logic. Data is written after function commands.

Example: log 1.23=0.08990511144
Operation: LOG 1(1)23 [LOG‘I .23 l

® | 0.08990511144 |

* Letters and numbers will be written in this manual without frames.
Example: ENMNOEOCEEGEDR — SINO15880]E
* Function and program commands can be written using either one key commands or alphabetical com-

mands but will be written in this manual using alphabetical commands.

m Calculations such as memory calculations used to store number values or calculation results and to
obtain totals will use variables. These variables are alphabetical letters (A—Z}, or letters and numbers
(0—9) in combination {when the memories are expanded to more than 26). To put a number value
or calculation result into a variable, use substitution.

Example: Store 1234 as variable A

Operation: AE1234 l A=1234 l
|]

Example: Add the result of 23 x 56 to variable K

Operation: KEKE23E56 [K=K+23%56]

@ [|

This method is the manual way to perform the same operation as sentence substitution in programs.

® To make corrections prior to pressing the B8 key, move the cursor to the position to be corrected
and press the correction key. (See Chapter 2)
® Press the key to cancel the entire display.

3-3 Manual Caleutlation Examples

3-3-1 Fundamental Calculations

m Addition, subtraction, multiplication and division

Example: 23+4.5-53=-25.5
Operation: 230458538 |-25.5 |

Example: 56X (—12) +(—2.5)=268.8

Operstion: 56 E3(0E12 DAOA2 50 [268.8 |

{may be anitted)
Example: 12369x7532X74103=6.903680613%x10'2(=69036806 13000)

Operation: 12369637532037410360 | 6.903680613e 12]

Example: 1.23+90+45.6=2.997076023x1074(=0.0002997076023)

Operation: 10231 90@4568 [2.997076023e-04 |

* When the result is greater than 10° or less than 1072, it will be displayed exponentiaily,

Example: 7X8+4XxX5=76

Operation: 7638ER4E350 l 76 ' —I

Example: 12+ (2.4X10% +42.6-78x36.9=2767.602817

Operation:

12020445@4206@78036(090 | 2767.602817 B

-15-

® Memory Calculation

Example: 12X45=540

12X31=372
75+12=6.25
Operation: AB 128
A3 4508 540
AB331E9 372
75 A B8 6.25
Example: 23+9=32
53-6=47
—) 45%X2=90
99+3=33
Total 22
Operation: ME2309H
MEME53 @66
MEMB4563 268
MEM D99k 3
ME | 22

* Using this operation method, individual calculation results cannot be identified. To see the individual
results, perform in the following manner.

23098 | 32 |
ME e
53@m6E@m | 47
M EM £3 68 D
458328 | 90 |
MEMB FEE
9om3®m | 33
MEME W B
MEE | 22]

3-3-2 Function Calculations

= Trigonometric Functions (sin, cos, tan) and Inverse Trigonometric Functions (sin™", cos™', tan™")

® When using trigonometric and inverse trigonometric functions, be sure that the angular units are de-

signated.
(1f angular units are not changed, this does not have to be accomplished again.)

Example: 14°25'36"=14.42666667°
Operation: DEG (142503600 | 14.42666667 |

* “DEG(" can be input using either one key or alphabetical command. (same for following}

Example: 14.2536°=14°15"12.96"
Operation: DMS 14(253668 | 14°15' 12.96”]

Example: Sin12.3456°=0.2138079201
Operation: @—-"DEG"”

SIN12(345668 | 0.2138079201]
(or & 12 (3] 3456, same for following)

Example: 2:5in45°Xc0s65°6'=0.5954345575

Operation:

2€3S IN 4563C0OS DEGU65E60E | 0.5954345575]

Example: sin~10.5=30 °(To obtain x when sinx°=0.5)

Operation: ASN Q564 r 30 e J
(or) & & @) 5, same for following)

Example: 2.5%(sin~'0.8—c0s~'0.9)=68.22042398

Operation:

2C15E3MASNOEDBEACSOH9DI® | 68.22042398

Example: cos(—g—rad)=0.5
Operation: [(53— "RAD"”

COSMA&E3IT®E | 0.5]
Example: COS_1%=O.7853981 634
Operation: ACS(OSQR 2208 | 0.7853981634 |

Example: tan(—3bgra)=-0.6128007881
Operation: Fad (6) — "GRA"

TANEI356 [-0.6128007881 |

= Logarithmic Functions (log, In) and Exponential Functions {¢*, x”)

Example: 10g1.23 (=109 101.23)=0.08990511144

Operation: LOG1(0236 | 0.08990511144

Example: |n90 (=loge 90)=4.49980967

Operation: LN90® | 4.49980967

Example: [0g456+In456=0.4342944819

Operation: LOG 456LNA45608 | 0.4342944819

Example: ¢€4-5=90.0171313

(To get the antilogarithm of the natural logarithm 4.5)

Operation: EXP4@O58 | 90.0171313

Example: 10'-23=16.98243652

(To get the antilogarithm of common logarithm 1.23)

Operation: 100310238 | 16.98243652

Example: 5.62-3=52.58143837

Operation: 5620360 | 52.58143837

Example: 1237 =¥723)=1.988647795

Operation: 12368018708 | 1.988647795

Example: (78-23)"'2=1.305111829x1072"

Operation: ©78@230G81288 | 1.305111829e-21

Example: 224+334+44=287

Operation: 202030304048 | 287

Example: logsin40°+log cos35°=—-0.2785679838

The antilogarithm is 0.5265407845 (logarithmic calculation of sin 40° x cos 35°)

Operation: (3) (DEG designation)

LOG SIN 40ELOG COS 35 -0.2785679838

10 BT ©.5265407845

= Hyperbolic Functions (sinh, cosh, tanh) and Inverse Hyperbolic Functions (sinh~!, cosh™!, tanh™!)

Example: sinh3.6=18.28545536
Operation: HSN3(6E | 18.28545536 B
lor B &5 & 3(3)6 , same for following)

Example: tanh2.5=0.9866142981

Operation: HTN2(5688 | 0.9866142981 |
Example: cosh 1.5—sinh 1.56=0.2231301602
Operation: HCS 1(O5EHSN 1058 | 0.2231301602
Example: sinh~130=4.094622224
Operation: AHS 3088 | 4.094622224]
(or & oy 34 3@, same for following)
-1
Example: What is X when tanh 4x = 0.88? x=£ﬂ_£%§20.343 9419141
Operation: AHT 0884 | 0.3439419141]

m Other Functions (v/, x/ , SGN, RAN#, RND, ABS, INT, FRAC)

Example: V2+V5=3.65028154

Operation: SQR2EISQR5@ | 3.65028154 B
Example: 8! (=1X2X3X:---- xX7%x8)=40320
Operation: 8 FeatE [40320 l
Example: Give “1’ to a positive number, “—1"" to a negative number, and ““0"" to a zero.
Operation: SGN6Eg 1
SGNOEY /)]

SGNER2E -1
Example: Random number generation {pseudo random number of 0 < RAN# < 1)
Operation: RANEE |0.904186914 |
Example: The result of 12.3 x 4.56 is rounded to 1072 12, 3x4.56=56.088
Operation: RND(012(13034(56 @208 | 56. 1]
Example: |—-78.9+5.6|=14.08928571
Operation: ABSO@78C9@5E60E | 14.08928571 |
Example: The integer portion of 18%0— is 81
Operation: INT(O78008 96 D)8 l 81 J
* This command will not exceed the original number value.
Example: The decimal portion of 7320 is 0.25
Operation: FRAC[I7800@960)& | 0.25

= Coordinate Conversion (R > P, P> R)

Example:

Operation:

Example:

Operation:

Example:

Operation:

Example:

Operation:

® Rectangular coordinates

Y P{x,y)
R) R->P
i
y ; PR
: D —
ol X X

What are r and § when x=14 and y=20.7?
(DEG designation)
RPC140]2037
(r) X9
(6) DMS YEE

What are r and § when x=7.5 and y=-10?
(8} (RAD designation)

RPC7(53@E 1068
(r) XBg
(6) Y8

What are x and y when r=25 and 8 =56°?
@

PRC250)56 &
(x) X
(y) Y@

What are x and y when r=4.5and §=2/3 m rad?

{ooe) (5]
PRC4(O5(2H&30E G
(x) XB3
() YB8

® Polar coordinates

Y
P(r.6)

r

ﬁe
ol X

The 6 of R — P can be obtained in the range
of —180° < 6 < 180°.
("RAD" and “GRA" are in the same range.)

24.98979792

55055’42. 207

12.5

-0.927295218

13.97982259

20.72593931

-2.25

3.897114317

® Effective Number of Units Designation and Decimal Designation

Effective number of units designation and decimal designation are performed using “SET"' command.

Effective number of units designation SETE n (n=0to09)
Decimal designationo oo SETFn
Designation cancellation, SETN

* For effective number of units designation, "SET E O’' is a 10 unit designation.
* | designation is performed, excess number management (See page 13 will cause deletion and rounding off
on the display one unit below the designated unit. The original number value will remain in the internal

calculation section or in the memory.

Example: 100+-6=16.66666666........
Operation: S E T ()4 @8 (effective number of units designated as 4 units)

1008660 | 1.667e 01 |
Example: 123+7=17.57142857...... .o
Operation: SE T(F)2 &8 (decimal designated as 2 units) .

123@78 | 17.57 |
Example: 1+3=0.,3333333333.........
Operation: S E T®)@4g (designation cancellation)

1@3%® | 0.3333333333 |

3-3-3 Statistical Calculations
® For statistical calculation, be sure to press (Fi) gj to clear the statistical memory, then start.

u Standard Deviation Calculétion

® Use the key and press one time for each data.
Data
® When there is duplication of data, press the key the desired number of times or

data (3] quantity
® Standard Deviation

& .
o _/El(xi —x)? ‘/Exiv (Zx)?/n [Use sample data in a group and designate that group’sJ
n-1=)

= standard deviation.

n—1 n-1
® Average
n
%= iZi%i= ETX
n
Example: When datais 55,54,51,55,53,53,54,52
Operation: A& '
556 54 A 5 1 E7A) 5 5 741 ,
53 517 5Ta1) 54 511 5 2 (5187 STAT 52
(Standard deviation 6,) SDXNEd 1.316956719
(Standard deviation on-,) SDXEE 1.407885953
(Average X) MX () 53.375
(Data n) CNT g 8

(Sumofx Zx) SXE8 427

(Sum of x squared Zx?) SX2&3 22805

Example: In the following figure, what are Oy and On -1 ?

Grade Number | Grade Value | Degree
1 110 10
2 130 31
3 150 24
4 170 2
5 190 3
Operation: =3

1100310620
130331
150061244

170

1 9 @ (4] 141) sa) STAT 190
s CNT= 70
SX=9640
SY=0
$X2=1351000
SY2=0
SXY=0
SDXN & 18.2968716
SDX &9 18.42898069

* Deletion and Correction of Erroneous Data (Correct operation: 51E11)

(1) B0[ETAT~ continue [F) &, then operate correctly.

(2) 49 ETA(several items before) = 49 [F1) & , then operate correctly.

Deletion and correction may be accomplished in a similar manner for a number of items.
49 (3112 (s1AT) (several items before) = 49(3)12 F1) &, then operate correctly.

m Regression Calculation

® Press x data (3] y data for data.
® When there are a number of similar data pairs, press[SiaDkey for the number of data desired or x data(GJy

data(3Jquantity (sTa7) .

®m Linear Regression Calculation

® Regression equation is y = A + Bx
Coefficients A and B are calculated using the following formulas.

Regression coefficient of regression equation Constant term of regression equation
B = nIxy—Zx-Xy A= Ty —B-Zx
n-x® - (x)? n

® Correlation coefficient r for the input data pairs is calculated using the following formula.

nZxy—Ix-Zy
J{n-2x* = (Zx)*} {n-Zy* - (Ty)?)

y =

Example: @ Bar steel temperature and length

Temperature Length Obtain the regression equation and correlation co-
S efficient from this measured result. Calculate the
10°C 1003mm length at 18°C and the temperature at 1000mm.
15 1005
20 1010
25 1008
30 1014

Operation:

102100364 STAT 10, 1003
15(]100564) STAT 15, 1005
201101064 STAT 20,1010
250110086 STAT 25, 1008
30101464 STAT 30,1014

(Constant term A) LRAES 998
(Regression coefficient B) L R BEd 0.5
(Correlation coefficient) CORES ©.9190182776
(Length at 18°C) EOY 184 1007
(Temperature at 1000mm)EQOX 1Q0Q0Q B8 4

* To cancel or correct erroneous input data {correct operation: 10(J1003)
(1) 11 (CJ1003)~ continue , then operate correctly.
{2) 10531030 A1~ continue (F1) & . then operate correctly.
(3) 1131003 (a1 (Several items before) > 11(3) 1003 [F1) &5 , then operate correctly.
Quantity can also be deleted or corrected in a similar manner.
11 (] 1003 (G110 ETaD(Several items before) - 11 (] 1003 G110 (F1 &, then operate correctly.

® | ogarithmic Regression Calculations

® Regression equation is ¥y = A + B+Inx. Data x is input as logarithm (In) of x. Data y is input the same as
linear regression.

® To obtain the regression coefficient or to correct, use the same operation as linear regression, but Zinx is
required for x, Z(inx)? is required for =x? and ZIn x y is required for Zxy.

Example: Xi Vi Make logarithmic regression of this data and obtain the constant term, co-
- efficient and correlation coefficient of the regression equation, then calcu-
29 1.6 late the determining coefficient (72).
50 | 23.b
74 | 38.0
103 | 46.4
118 | 48.9
F&h
Operation: LN2931()6En) TAT 3.36729583,1.6
LN50(323(E564) T 3.912023005, 23.5
LN 74333806 TAT 4.304065093, 38
LN 10334646 T 4.634728988, 46.4
LN 11834896 T 4.770684624, 48.9
(Constant term A of the regression equation) L RABY -111.1283976
(Regression coefficient B) L. R BE8 34.02014749
(Correlation coefficient r) COREE - 0.9940139464
(Determining coefficient r?) E32 &8 0.9880637256

m Exponential Regression Calculation

® The regression equation is ¥ = A-eB*¥ (Iny = InA + B-x).
Data y is input as logarithm (In) of y. Data x is input the same as linear regression.

® Correction method is the same operation as linear regression but InA is required for constant term A,
Slny is required for SUM Y, Z(Iny)? is required for SUM Y2 and Zx-Iny is required for SUM XY.

Make exponential regression of this data and obtain the regression equation

Example: x; Vi
and correlation coefficient.
6.9 | 214
12.9 | 15.7
19.8 | 12.1
26.7 8.5
35.1 5.2
Operation: &‘%
6(3J9CGILN 21 ()4 6mny AT 6.9, 3.063390922
12(=9GILN 1576 T 12.9, 2.753660712
19@H8FILN 121 & T 19.8, 2.493205453
26 7GLN856n) T 26.7, 2.140066163
3551 GLN5()26n] T 35.1, 1.648658626
(Constant term A)JEXP L RA[EE 30.49758742
(Coefficient B)L RB B8 -0.04920370831
(Correlation coefficient ») COR B8 -0.9972473519

= Power Regression Calculation

® The regression equation is ¥ = A*x8 (Iny = InA + Binx)
Both x and y data are input as logarithm (In).

® Correction method is the same operation as linear regression but InA is required for constant term A, Zinx
is required for =x, T(inx)? is required for £x2, Ziny is required for Ty, Z(iny)? is required for £y? and
Z{inx, Iny) is required for Zxy. .

Example: xi yi Make power regression of this data and obtain the regression equation and
correlation coefficient.
28 2410
30 3033
33 3895
35 4491
38 5717
Operation: G

LN28GILN 241 0EH 3220451, 7.787382026
LN3Q0ELN30336A 1197382, 8,017307508
LN33FLN 38956 6507561, 8,267448958
LN35FLN4491 58 5348061, 8.409830673
LN38ELNE571764] 3758616, 8.651199471

{Constant term AJEXP LRADS 0.2388010829
{Coefficient B)L RBEE 2.771866148
(Correlation coefficient r) CORE® Q.9989062562

Chapter 4

Program Calculation

This instrument uses BASIC as its program language. BASIC is an abbreviation for Beginner’'s All-purpose
Symbolic Instruction Code. Also, it is said that it is a fundamental language system which is easy for
beginners to use.

BASIC Language Features

1. It is a problem solving language and programming efficiency is improved.

2. Not only is it a program language which is not limited to a particular field, but is a general use lan-
guage which is applicable to many fields, such as natural science, social science and business fields.

3. It is a conversation type language and the computer user can compose programs while conversing with
the computer and use it for making entries.

4. It has many of the capabilities and features of FORTRAN but is free from the rules encountered when
using FORTRAN.

5. Many fundamental built-in functions have been prepared and it has an expanded calculation range.

4-1 Program Outline]

Program calculation 1) programs calculation contents to be executed, 2) calculator stores programs,
and 3) using these programs. Simply input the data and the results can be obtained automatically.

& Programming Fundamentals

Let's take a look at the programming necessary to use the computer for a given problem, and at the
concept and programming procedures.

® Programs and Programming

When the operator uses the computer to manage a problem, instructions must be used which are in
words that the computer can understand. These instructions are called programs and the composing of
these instructions is called programming.

® What is a program?

In order to make a program, there are many grammatical rules, but these details will be explained later.
First, to discuss what a program is and its form, let’s take a look at an example of a fundamental program.

Command
——Operand
10 INP A,B Input statement
20 C=A+B Operation statement
30 PRTC Output statement

Line number

The above program is a fundamental program and consists of an input statement, an operation state-
ment, an output statement and line numbers. That is to say, the input statement inputs data. Accord-
ing to that data, the operation statement performs various operations, and the output statement outputs
the execution results. Also, each line has a line number preceding it. These operation statements are not
limited to one but are performed several times and, by adding decision statements, the program becomes
long and complicated. Nevertheless, they are fundamentally the same.

Also, on one line, following the fine number, a COMMAND is written which tells the calculator what
to perform next. it is composed of alphabetical characters. It is followed by OPERANDS which indi-
cate the necessary information for the command.

The above is called a PROGRAM and is in the fundamental form.

® Number of program steps
Program steps are counted as follows.

1) Program command vt e e 1 step/1 command
2) Functional command e 1 step/1 command
3) Line nuUmber e e e e 2 steps/1 line number
A) CharaCler . . . v v o e e e e e e 1 step/1 character
5) Pressing the [(X8 key after each line number’s key input to store in the calculator. . 1 step
Example:
LANP, A B8, 5 steps
2 1 101
J0, B, = SIN, A BB, . e 7 steps
2 1 1 1 11 -
PRT, ‘. B, = /.1 B 10 steps

C@z&._m_#_;.:uu__.._, ..

1 T 1 1 1 1 1
Total 22 steps

Note: Assigning a password requires 6 steps. (See page 74.)

= Programming Sequence

Programming progresses in the following sequence.
1) Problem analysis

2) Flow chart preparation

3) Writing of the program on a coding sheet

4) Debugging execution

Explanation

Step 1: Analyze the given problem to determine the required steps for solving.

Step 2: Write a flow chart to represent the flow of logic for the solution of the problem. The flow chart
is composed of symbols which show processing and decision making elements.

Step 3: Based on the flow chart, write a program on coding sheets or similar forms using BASIC language.

Step 4: Check the program for mistakes.

The above is the procedure for composing a program.

m Flow Chart
The most widely used flow chart symbols are written below.

Symbol Nomenclature Meaning

@ Terminal Initiate, terminate, etc.
: Input/Output Input/output functions.
[_—_::] Process Numerous processing functions.

. i e
ﬂ:ﬂ Predefined process A group qf commands defined elsewhere, such as
a subroutine.
Decisi Decision on the choice of a specific route from
ecision ;
among several possible routes.

® Flow Chart Example
Here, let's take a look at a simple example of a program for determining the area of a circle.

S=mqr

First, following programming fundamentals, consider the data input, operation and result output sepa-
rately as shown below.

—————— = input data {radius)

——» Computearea S

————— > Display result S

The flow chart is prepared in this manner following the program flow and is composed viewing the pro-
gram in its entirety.

When programming, make it a habit to compose a flow chart. If more complex programs are created,
confusion can be avoided.

® Coding

Coding is the process of writing programs on coding sheets or similar forms after program assembly.

When assembling programs, certain operating symbols are required. The simplest fundamental operat-
ing symbols are written below.

The four fundamental arithmetic operation symbols

+and — are expressedas '+ "and ' ="'

x and + are expressedas "' X ""and "' /"’

Powers, such as x* and x3, are expressed as "x12" and "“x13"".

The " ="" used in assignment statements will be explained in greater detail later but is explained briefly here.
For example, the " =" in S =72 means to assign the calculation result of 772 t0 S as opposed to hav-
ing the meaning of equal as in mathematics.

Let’s write a program to determine the area of the previously specified circle.

’"

1) Write an input statement to input data 7.
There are many input commands but usually the “INP” command is used to input data from the key-
board during program execution. The input statement used to input data ¥ becomes INP R. If a line
number is added to the input statement to make it complete, it becomes 10 INP R.
These line numbers can be in the range 1 to 9999 but identical' line numbers cannot be used in the
same program. Otherwise, the later line number will take priority. Usually, it is more convenient to
assign line numbers in increments of ten for easy addition, correction and deletion. If the program
is started, the statements are executed in smaller to larger line number sequence. So, assign the line
numbers in program execution sequence.

2) Next, make an assignment statement to assign the result of the calculation from the input data to S.

Since Tr? means wxr?

then =T XR 1 2(X is represented by % and R? is represented by R12)

Therefore, with the line number attached as usual, it becomes

20 S=7TXR12

Write an output statement to output (display) the result of the operation.

Since this is just for calculation and does not cause a display, use “PRT’ command to display the

result.

The output statement to output {(display) result S becomes

PRT S

And, adding a line number to this, it becomes

30PRTS

So, the complete program for determining the area of a circle is:

10 INPR

20 S=wXR12

30PRTS

For program coding, it is not necessary to use the exclusive coding paper but, if it is used, it will be

more convenient for problem analysis or writing flow charts in a standard format after composing.

27 —

3

—

PLZ Program Fundamentals

m Constants and Variables
Characters used for BASIC are upper case letters of the alphabet (A to Z) and numbers {0 to 9) as well
as some special characters (such as symbols).

® Constants
A constant is a fixed value which can be written directly into a program.

Example: In the expression S=7nr?, it becomes S=mrXR12 and 2 is the constant.

e Variables

A variable is a value that is used in a program but is input from the keyboard during execution and is
used when the result of a calculation is unknown initially because the result is assigned during execution.

A variable consists of one uppercase letter (A to Z) or a combination of one upper case letter and one
single digit number (AQ, A1 to A9, BO to T9 ... when memory is expanded). Assignment can be made

from within this range. .
Example: [n the expression S=7r?, which becomes S=rXR12, R is the variable.

Example: Y=2XX1t2+3X%XX+4 V: Variable

LT

v C VvV C C Vv C C: Constant

That is, algebraics and constants used in mathematics correspond to variables and constants, respectively.
Also, in addition to the above, there are character constants and character variables. Character constants
are strings of characters which are written in directly, such as "ABC" and “"END", and enclosed in quo-
tation marks and spelled out. Character variables are not a numeric value but variables which accept a
character string. Each time a character string is given the contents will change.

A character string is composed of characters enclosed in quotation marks, such as “123" and is not a
numerical value. Thus, “123" is just the numbers 1 and 2 and 3 written in sequence and is considered
the same as "ABC"' in quotation marks.

Character variables are general variables (such as A, B, X and Y) which have a $ sign attached. Selections
can be made from within this range.

Example: AS$, BS, C$, X$, Y$

Character variables can be compared or added to one another but other operations (such as subtraction,
multiplication and division) cannot be performed.

Example: |f A$ ="123" and B$ = "'456"
Using C$ = A$ + BS
C$ becomes '"123456"
(If C$ = B$ + A$, C$ becomes "4566123"')

A character string of up to 7 characters can be inserted into this character variable.
Also, besides these character variables, there are exclusive character variables. Exclusive character varia-

bles are displayed using a $ sign. 30 characters can be inserted in the character string.

Example: $ = "“1234567890ABCDEFG"
These exclusive character variables can use character functions (MID functions) which will be explained

later. These can be used more conveniently than other character variables.

® Assignment Statements

BASIC assignment statements are in the form shown below.

Variable = Numeric Expression _

In BASIC assignment statements, an expression having arithmetic operations {+, —, X, /) on the right
side is called a numeric expression.

Example: For Y = 2X¥X+3, the 2XX+3 on the right side is a numeric expression.

Example:

This " =" does not mean "equals”’, it means "‘assign’".

For Y = 2XX+3, the left side is the variable and the right side is the numeric expression. Thus,
it does not mean, as in usual mathematics, that the Y on the left side and the 2X%XX+3 on the
right side are equal. It means to assign the result of 2XX+3 to Y. (Y =2X%X+3 can be better
understood if it is thought of as Y « 2% X+3)

Example Assignment Statements

A=B........ ... Assign the value of B to A (the former value of A is deleted).
N=2*M......... Assign double the value of M to N.

X=Y+Z........ Assign the result of the sum of Y and Z to X.

I=r+1......... Assign the value of | + 1 to | (the number value in | will be increased by 1).

[4-3 Program Writing and Execution

= Program Writing
Storing a program in the calculator’s memory system is called program writing.
This operation is performed by keying in inputs from the keyboard.

1.

2.
3.
4
(1)

(2)

(3

WRT mode designation

Program area designation

Program input by line units (writing)

The program area can be divided into 10 parts from PO to P9. Programs are written somewhere in this

program area.

WRT Mode Designation
Program writing is performed in the WRT mode.

Pressoog (1]. ““WRT" will be displayed.

Program Area Designation
To designate a program area, press the Fl}key then a (@) to(8) numerical key.

B H— PO EB&— P5
B&H— P1 EB&H—P6
F&— P2 BGH—P7
B&— P3 ®B&H— P8
F&— P4 B&—P9

Program Input (Writing)

Program writing is performed in line units. Up to 62 characters, including the line number, can be written.

Finally, press the B8 key.

* The Role of the B Key.
The BB key is pressed to write programs, input data and to obtain the result of manual calculations. For

program writing, press the key after each line number’s key input to store in the calculator. Program
writing or written program content change, addition and deletion are all followed by pressing the Efkey
as the final step. If the contents of the display are changed and the B8 key is not pressed, the written in

contents will not be changed.

Example: Write the follpwing progeam w PO
1@ INP A.B
20 V=A+B
30 W=A-B
4@ PRT V. W
E@ END

Dperatian:
1. Dasignate WRT mode, Written in PG

|
W81 | READY P6: ©12345.789'77°

e —— |
Ul fiT1E81 QOGRAM NL!H.,M
AR of sleps

Cuirred 1 des igrated
prograT ared

* pumbar of steps will be changed by the number of
memories of amounl of programs writlen.

2. Designate program area PO

m& | READY P@: 012345.789'%2%

2 If a previously written program remaing, claar it Oimitted heregfier

CLRE | READY P@: ©12345.789'2%%

iWhen rothing is written, omit this step.)

4, Write line pismber 100

10,1 NPLADB 1@ INF A.B 1"1]
ﬂ‘ B sure 19 press when changing lines

Mears | character space (May be omitted)

5. Wrie line number 20,

20 vEA@BBE | 20 V=A+B 1213
6. Write line numiber 30. .
I0_WEARBE | 30 W=A-B 1208 |
7. Write line number 40 .
40, PRT_VEIWE | 40 PRT V.M 1188

B, Write line numbsr 50
5@ _ENDE | 5@ END 1104

® A space [writhen betwsen ling numbars and commands and operands 1o make it easier 1o read the dis
play. In BASIC tanguage, except messages such as PRT statement, it had no spacial mesEning. -

® | this c=se, line numbers are mpul inounits of 100 Ling numbers can be frealy m»a:md +m-'n within &
range of 1 10 9990, Selecting in units of 10 makes it aasy to make additions and insertions later.
Program essculion s performed o line number sequence from small numerical value, so attach line

numbers in Erogram un squUenoe,
— 30—

® Program Execution
Program execution is performed in the RUN mode (pressmoog (2]. . . “RUN"" will be displayed).
There are two methods for executing written programs.

(1) Program Execution Methods

1. Execution by program area designation
For this method, execution is begun at the same time as program area designation.

PO
@
{ {Press one of the & to & keys after pressing 1))
&
Example: Start the program specified in the previous example. RUN mode (omitted hereafter)
Operation: 2 l - RUN ,

* This “'?"" is because the INP statement is written at
the beginning.

2. Execution by RUN command
RUNEE (RUN can be input by pressing(RI[UJ[®) orF2) &) I ? l

* Continuing from the previous example, a "7 is displayed. In an input waiting situation, cancellation will

not be effected by 8. After pressing M®8(2), operation 2 is performed.
Also, to execute along the way, after the RUN command, input the line number and press the @8 key.

Example: Start from line 20.

Operation: RUN 20 &g

* For method 1, it is not necessary to designate the program area to be executed. However, for method 2,
it is necessary to designate the program area to be executed. (If the program area is different, the program
written in that program area will be executed.)

(2) Key Input during Program Execution
Key input during program execution uses the INP statement and KEY function. Key input by the KEY

function is 1 key input only but even when no key is input, execution continues.
For key input using the INP statement, a ""?" is displayed and there is a pause awaiting input. After data

input, execution is started by pressing the B8 key.

Example: Execute the program written in PO in the previous example.

Operation: Execute program

B& | 2]
® For this program, 2 variables are input. First, the value of variable A is input.
a7@ | 2]
® Next, the value of variable B is input. '
69 116
CONT] -22

In this manner, for key input during execution using the INP statement, input data using data @g. Also,
when awaiting input using the INP statement, if the [B8 key is pressed directly without inputting a number,
"STOP” will be displayed and a stop situation will occur. At this time, other operations such as manual
calculation can be performed. To continue the stopped program, press the [conf key.

In addition, in a waiting input situation, to stop program execution, if®8M8are pressed directly, a stop

will occur.

44 Prografn Edit

® Program edit is used to make a program logically correct and makes it possible to make changes, additions
and deletions or to accomplish line number rewrite.

® Program edit is performed using the LIST command to call out each line.

® LIST command is usable in both the RUN mode and the WRT mode but if the RUN mode is used, pro-
gram contents will be displayed. 1f the WRT mode is used, program edit can be performed.

(Display lasts about

(1) Display of the Program List Using the RUN Mode. 2 seconds)
Operation: LISTEY 10 INP A,B
(LIST can be DM Hor FA5R) 20 V=A+B
30 W=AR-B
40 PRT V., W
50 END

Furthermore, if the list is not needed from the beginning, designate the line number.
To list from line number 30:

Operation: LIST 30@ 30 W=A-B
40 PRT V:H
50 END

* During the LIST command execution, the display will be made in sequence until the end. Press the (§T07)

key to stop.
Also, to continue the stopped LIST command, press the[con] key.

(2) Program Change, Addition and Deletion in the WRT Mode.

1. Changing
Using the LIST command, each line will be displayed in sequence from the designated line number "each
time the B9 key is pressed. Also, if the designated line number is omitted, the display will start from the

first line.

a. Partial change
Example: Change the ""+" to "X’ on line 20 in the previous example.
Operation:

® |n case the program area is not designated at PO, designate PO.

& [READY PO: _12345.789''%4]

® Call out line number 20 using the LIST command.

LIST 2088 | 20 V=A+B_ 1194]

®-Move the cursor and set it at the location of the desired change (i.e. "'+").
| 20 v=AiB 1194

* |f a cursor movement key ((&)) remains pressed for more than 1 second, fast movement can be
achieved.

® Make the correction.

DBE | 30 W=A-B- 1194

* Be sure to press the B8 key. If it is not pressed, only the display will be changed and the written program
contents will not be changed.

® At this time, line 30 will be changed. Press the 8 key to clear the display and the change is complete.
, — 1194

* Operation of other keys at a line where no change is required causes them to be written in on that line.
Therefore, do not press any keys other than @8and 8.

® Use LIST to make sure of the change.

READY PO
LISTEe 10 INP A,B
20 V=AXB
30 W=A-B
40 PRT V,HW
50 END

b. Changing an entire line
Input the line number to be changed. (In this manner, the previously input line number is cleared.)

Example: Change “W=A—B" to "W=V/2" on line 30.

Operation: | READY POQ: _12345.789'1%|
® Write the new line 30.
30 WEVE2E | 30 W=V/2 1194]
® Check the program list.
READY PO
LISTE 10 _INP A.B
20 V=A%*B
30 W=V/2
40 PRT V. W
5@ END

2. Addition
To add line units, use a line number that falls between the line numbers where the addition is desired.

Add ""U=VX2" between line 30 and line 40 in the previous example and change line 40 to
“PRTV , W, U".

 Operation: @O | READY PQ: _12345_789119%

Example:

® To input between line 30 and line 40, input line number 35.)
35 UEVE2E | 35 U=Vk2

* Select a line number from 31 to 39 for input between line 30 and line 40.

1186]

® To change line 40, call it out using the LIST statement and add ', U"".

LIST 40® 40 PRT V. MW 1186
HuE 50 END 1184
_ 1184

® Check the list to make sure of the program additions.

REARDY PO
LISTED 1@ INP A,B
20 V=AXB
30 W=V/s2
35 U=Vx2
40 PRT V,HW,U
50 END
3. Deletion
a. Partial deletion
Example: Delete 'V, " from line 40 in the previous example.
Operation: @0© | READY PO: _12345.789''8¢]
@ As in the partial change method, call out line 40 using the LIST statement.
LIST40E | 40 PRT V,W,U_ 1184
® Move the cursor and set it below the W (to the right of the desired deletion position).
[40 PRT V.KW.U 1184
® Use the @ key 1o delete 'V, ",
40 PRT W, U 1184
B 50 END 1186
* |f the B8 key is not pressed, the program contents will not be changed.
[_ 1186J

* Be sure to press the @8 key to cancel the line number 50 change situation.
® Check the list to make sure the deletion was accomplished properly.

RERADY PO
LISTEY 12 INP A.B
20 V=ARXB
30 W=vVs2
35 U=Vxk2
40 PRT HW,U
50 END

b. Deletion of an entire line
input the same line number as the one to be deleted and that entire line will be deleted.

Example: Delete line 30.

@8O | READY PO: _12345.7891'1%°

Operation:

@ [nput the line number to be deleted, i.e. 30.

3@@ I _ 1194J

® Make sure of the deleted position.

READY PO
LISTES 1@ INP A.B
20 V=RAX%B
35 U=Vxk2
40 PRT WsU
5@ END

4. Limne number correction

Exampla: The folkowsing Srogram is writhen in P2,
1@ INF N
20 M=MNT2
3@ L=Nt@.5
4@ PRAT M.L

5@ EMD
Miorva line number 20 Catwaan lins 30 and line 400
Operatian: EREES | READY P2: _1_345_789''97|
® Call out line numbar 20 using tha LIST command.
LIST 200 | 20 M=NT2_ TTED |
& [owe tha cursor bansath the 2 on lime 20,
= == | 20 M=NT2 1-1-!:13-[
® Change the 20 to read 35 and input
350 | 30 L=N1D.5 1183
#® To complete tha changa, press Bl and canced the changa command.
m | - 1 lul

® Lise LIST to see how thie program contants ware changsd,
E=E READY P2

LISTE 1@ IMP M
20 M=NT2
30 L=NTO.5
35 M=MT2
48 PET M L
58 END

®. 41 1his tirne, the contents of line 20 were moved batesen line 30 and line 40, but lina 20 sl rermains.
S, delete the vnneeded line.

B 1] READY P2: _1_345_789"'52]
2 - lu-nf

& This comgletes the line rumber mose Check thie results ising LIST.

= =] READY P2
LISTE 1@ INP N
3@ L=NTO.5
36 M=NT2
4@ PRT M.L
5@ END

— 05—

= Program Debug

(1) Program Debug System
This equipment’s debug system is divided roughly into desk top debug and conversation type debug via
display.

a. Complete Dubug

Program logic structure check.

1. Desk Top Debug
b. Partial Debug
Program line unit check.

Debug Systems

I1. Conversation type debug via display
Using the display, check program execution flow and errors in BASIC language

composition using the automatic checking mechanism of the calculator.

The desk top debug is executed during programming.
Here the explanation of the conversation type debug via the display will be made.

(2) Conversation Type Debug

Any error made during program execution stage will be given on the display using an error message. These
errors are displayed in line units and display the type of BASIC language error. Based upon the error mes-
sage on the display, debug is accomplished by conversation using the manual.

Furthermore, for the meaning of the error messages, see Page 79 for the error message list.

Example:
10 INP X
20 Y=X12+3%XX+15
30 PRT Y

49 END
Y=X12+3X+15 was entered on line 20 in this program by mistake.

Operation: |f this program is executed, " ? ' is displayed using the line 10 INP statement.

RUNBD | 7]

® At this time, input 45

458 | ERR-2 IN PO-20 |

® This error message indicates that a statement structure error occurred at line 20 and the program con-
tents must be confirmed.

READY PO: _123456789
LIST 20&8 20 Y=X12+3X+16_

® Since “X" is missing between ““3"" and *’X" on line 20, correction is made using the program edit method.

EEEEES 20 Y=XT2+3_X+15
[+ JEa) 30 PRT Y

- 36—

(3) Program Debug during Program Execution

Conversation type debug is debug that is performed using the information obtained from the calculator
by an error message. However, if an error is not displayed but the calculation result is not as expected,
repeat program execution and conduct debug by confirming the calculations along the way.

This method uses the STOP command to stop program progress and uses the TRACE mode to debug line

by line.
® Debug using the STOP command

Example: The following program is written.
10 Y=0
20 INP N.X
30 FOR =1 TO N
49 Y=Y+X12
5@ NEXT |1
60 PRT Y
7@ END

To see the value of Y in the FOR*NEXT loop, see the result of each loop using the STOP statement.

Operation: The best place to input the STOP statement is right after the calculation formula, so write the

STOP statement between line 40 and line 50.

(o) (1 READY PO:

123456789

45 STOP®@ 45 STOP

® By doing this, the program progress is stopped after the completion of the calculation on line 40 and

debug can be performed.

READY PO
RUNE3 ?
4 ?
878 -

|
Cursor blinks

® What is the value of Y at the time of this stop?

Y B9 7569

]

® When the program starts again, it will stop at the next STOP statement and request the value of Y again.

CONT|

Y g 15138

® By repeating this operation, the calculation process can be seen.

This example uses a simple program but when a complicated program is actually composed, it is very dif-
ficult to check the calculation process using desk top debug. So, if the check of variable is performed

using this kind of STOP statement, program errors can be seen and corrected.

® Debug using TRACE mode

If program execution is performed using the TRACE mode (press (2)), it will execute each line and then
stop and execution debug can be performed easily. Using the previous STOP command, let's perform a

sample debug using the TRACE mode.

Operation:
Designate “RUN"" mode
Designate TRACE mode (moog) (2)
RUNEE
Examine program contents STOP
CONT
4
87 &g

STOl

)

w o wv (=]
- (=] - o
2l |1Z| i=| |=
3 5 & &

B

Valueof YY

=)))
=] - =]
z =] =z
S] =

%3
|2
o
)

“RUN", “STOP" and “TRACE"”
are omitted hereafter

RERDY PO
RUN TRACE
READY PO
RUN STOP TRACE
PO-10 |
RUN STOP TRACE ¢—m——1
PO-10 Y=0
PO-20
2
?

P@-20 INP N:X

PO-30

PO-3@ FOR I=1 TO N

PO-40

PO-40 Y=Y+X12

7569

P@-45

P®-45 STOP

P@©-50

PO-50 NEXT 1

! Repeat these steps. *

This debug using the TRACE mode is the most proper method for examining the overall flow and is con-

venient for finding out where errors have occurred.

45 Program Commands)) ; J

4-5-1 Jump and Loop

B Jump Commands
Jump commands can be broadly separated into two commands. One is called a GOTO statement and is an

unconditional jump. The other is a conditional jump combined with an |F statement.

® GOTO Statement
The GOTO statement is called an unconditional jump because it is a command that unconditionally

advances the program to a designated location {line number).

Example 1: Add a GOTO statement in the program to determine the sum, difference, product and quotient
of the data A and B.

First, the fundamental program is shown below.

Flow Chart
20 S=A+B
30 D=A-B
49 P=AXB / Input A and B /
50 Q=A/B r
60 PRT S.D.P.Q
70 END S A+

D+<A-8

P —~AXB

Q<A/B

/ OutputS, D, P and Q /

End

Whenever this is executed, it must be allowed to “RUN"’ to insert data repeatedly. So a GOTO statement is
input at line 70 instead of END so control will return to the proper location where the data is to be input.

(Line 10 in this program)
This GOTO statement (GOTO 10) unconditionally jumps to line 10. The program is shown below.

20 S=A+B
30 D=A-B *
40 P=AXB / Input A and B /
50 Q=AsB |
60 PRT S.D.P.Q
70 GOTO 10 S+A+8B
D+<A-B
P <AXB
Q+A/B

/ OutputS, D, P, and Q /

[

In this program, once the data is input, it goes to an await input stage (? is displayed) and the next data can
be input right away.

Execution: Input data 15 and 3, and 903 and 43.

Operation: RUN (g ?
159 ?
3= 18
CONT 12
CONT] 45
CONT] 5
CONT] ?
903 ?
4309 946
860
CONT 38829
21

For this program, using the GOTO statement, which is input at the end, it returns to line number 10 “INP
A, B". Also, as in this example, if a line number is written after GOTO, it will jump to the designated line.
However, instead of a line number, if “#" and "0 to 9" are written, it will jump to a designated program
area.

Example:
GOTO 10 (Jump to line 10 and execute from line 10)

GOTO #5 (Jump to program area P5 and execute P5 program)

Example 2: Make a program to increase the value of A by increments of 1.

20 PRT A
30 A=A+1

40 GOTO 20] A1 |
i

[owewa [/

I A< A+1 l
I

Explanation:
Since A is increased in value sequentially in increments of 1, it is necessary to assign an initial value of 1 to

A. Thatis, “"A=1" on line 10.

Next, PRT (print) A
At line 30, the result when 1 is added to A is assigned to A. That is, “A=A+1". Then since the program

process causes a jump using the GOTO statement, it is necessary to jump to line 20 instead of returning to
the beginning. So it becomes GOTO 20.

In this manner, the GOTO statement causes the program process to jump unconditionally to a designated
location.

Note: When using the GOTO statement, it is necessary to be sure to designate the correct destination line
number. If the line number is omitted from the GOTO statement, an error will occur.

PRT Statement Application

The PRT statement used in this program changes the manner of display in accordance with the delimiter
designations following the operands.

First, for example 1, S, D, P and Q are separated by a ', {comma).

Display stops after S. To display the D, press the key. That is, if items are separated by a comma, the
results will be displayed one at a time. If the **, " isa '’ ; ', what will the display be like?

The result will be as follows.
40

Dparation:

RUNE= ?
15E8 G
1] 18 12 45 5
LOHT T
20 3 ?
43 EE 946 B6@ 38829 21

Tha ;" in this case |semicolon) operates when thenss gra sevaral results and causas ewsarything o be g

played sequentlally.
Furthermone, on the display, one space appears aftéer sach resull. The "+ i notl digplayed at the sign
colurms: but is actually presant.

5ign colwmn

Al if gxample 2 s executed as s, the rasull wall Be a8 shown Dalow,

Ciparation;
RUNES 1
| 2
3
& 4

Horeresar, i1 7 5" i input followdng “FAT A" on line 20,
20 PRAT A
thi following result will be obtained,

RUNE | 1 2 3466 7 89 1
123466 783910
2346586789 10
2 3 4 5 686 7 859 161
245856 7 89 18 11

Tharefora, continuows results are disglaved by using ™ ;. Furthermaore, thera 5 & “WaAIT" command
tfor stopping the display for a carain period for PRT statement display stop, Aefer 1o Page 59 for details

GOTO Statement Fndirect Designation
Tha previows GOTO statarment designated tha jump desionatica directly and caused jump. Howeear, the
indirect designation determings the jump destination according to the walue of the variabla, It is wsed
when the jumg destination cannot be writtan at the beglaning of tha program as wehen tha aperaticn
raethad is undarstoasd from the data,
Indirect designation consists of;

GOTO variable or numeric expression

GOTO £ varable or memeric expression

This uses the walue ol the variable (8,8, X%, a1c.) or tha numarnc sxpression (A48, X+10, et b 1o dater-
mine wwhizh line romber 0 jurmgs 10 oF which program area 10 jump 1o,

Example 1: GOTO AX 100

]7 GOTO A%*100 J

In this program, when Ais 1,2 or 3
For A=1, GOTO 100 means jump to line 100 A=1
For A=2, GOTO 200 means jump to line 200 100

For A=3, GOTO 300 means jump to line 300 l—__:]
A=2

A=3

if A is something other than 1, 2 or 3, then the jump location]
is unknown. This will cause an error or jump to another line :

number. : 300

Example 2: Make a sorted totals program using indirect desig-

nation. (Classified here into 5 divisions)
The program will be as shown below.

10 VAC

20 INP N.M

30 GOTO N+40

49 PRT A,B.C.D,E:END -

41 A=A+M:GOTO 20

42 B=B+M:GOTO 20 Input Nand M
43 C=C+M:GOTO 20
44 D=D+M:GOTO 20 GOTO N+40
45 E=E+M:GOTO 20 N=1 T
Qutput
A,B,C,Dand E
A<A+M
N=2
End
B«~B+M N=3
N=5
C«~C+M
N=4
D<D+WM
1
E<E+M
. .

The ""VAC'* command on line 10 is a command for clearing the data use memory {makes it 0). In this
program, clearance in advance is necessary in order to total the data input on lines 41 to 45. At the next
INP statement, code number (N} and amount of earnings are input.
Using line 30 GOTO statement, if the code number (N) is 1, jump to line 41, that is to say, the total earn-
ings of code number 1.
In the case of code number 2, jump to line 42. In this manner, earnings (M) will be divided into code
numbers 1 to b.

N=1 : GOTO 41—41 A=A+M : GOTO 20 Execute

=2 : GOTO 42—42 B=B+M : GOTO 20 Execute

: GOTO 43 —43 C=C+M : GOTO 20 Execute
: GOTO 4444 D=D+M : GOTO 20 Execute

: GOTO 45 —45 E=E+M : GOTO 20 Execute
— 2_

2222

CthWN

Therefore, when N is 0, it will jump to line 40. A, B, C, D and E sorted results are displayed and termi-
nated. Furthermore, for this program, N must be input as O to 5. Any other number will cause an error.

Let's demonstrate below using actual values.
Receipts are not in sequence so input them in sequence and sort the totals (within the 5 divisions).

Code Earnings Code Earnings
3 2870 1 7820
2 1960 2 5720
5 3850 3 10080
5 1250 ‘ 4 6120
1 2500 5 9470
2 2310
3 1850
5 4370
3 5360
1 2220
2 1450
4 6120
1 3100

Operation:
RUNEE ?
3@ ?
2870 ?
269 ?
196063 ?
169 ?
3100E3 ?
o6 ?
o 7820
5720
10080
6120
CoNT 9470
* The " :” used in lines 40 to 45 in this program is called “multistatement’’. It.allows different com-

mands to be written on one line. If commands are continuously performed, line numbers can be
omitted and memory can be saved. Using this multistatement, many commands can be combined.
However, the number of characters that can be written on one line, including the line number, is limited

to 62 characters.

® |F Statement
An |F statement is called a conditional jump due to its nature. It executes its operation only when cer-

tain conditions are satisfied and is a command to jump to a designated location.
If this is written in a flow chart, it will take the following form.

YES
NO

This means that if the |F statement is true, it goes to "YES", if it is not true, it goes to “NO".

In other words, an IF statement indicates a branch at which a decision will be made to determine the
next operation according to the result.

This IF statement is used for terminating a loop when the number of data is not known, or when the
next operation is changed according to the result of an operation, etc.

Input the lengths of three sides of a triangle and determine if a triangle can be formed using
the three sides.

The program is shown below.

10 INP A,B,C b=
20 IF A>=B+C THEN 70 / inputAB.andc /
30 IF B=A+C THEN 70
49 IF C=A+B THEN 70
50 PRT "“OK”

60 END

70 PRT “NG”

80 GOTO 10

Example 1:

YES

YES

YES

/ Display “OK"" / / Display “NG"' /

End

Three data are input for this program. Due to the nature of a triangle, the sum of the lengths of two sides
is greater than the length of the remaining side. Each side is compared and if a triangle cannot be formed,
“NG"* will be displayed and the program will return to the data input operation. If a triangle can be formed,

"“OK"" will be displayed and program is terminated.
The IF statement is composed using expressions as shown below.

IF comparison expression THEN line number (numerical expression) or #72 (=0 to 9)
or
IF comparison expression ; command or assignment statement

The comparison expression following “/|F"" compares the right side of an equality or inequality sign with
the left side. If YES, it will proceed after “THEN’ or " ;. If NO, it proceeds to the next line. In other
words, for line 20, if A is greater than or equal to the sum of B and C, a triangle cannot be formed. So,
“THEN 70", in other words jump to line 70, command is performed.

This “THEN"" includes the GOTO statement function.
_44 -—

If a line number is written following “THEN"', it will jump to the designated line number. If " # " and

0 to 9 are written, it will jJump to a program area (PO to P9).
Also, when the comparison expression is YES, if a command or assignment statement is desired instead

of ajump, ;" is used instead of “THEN"".
In these comparisons, constants, variables, numeric expressions, character constants and character varia-

bles can be used.

A=>10 variable and constant (YES if A is greater than 10)

XzY variable and variable (YES if X is greater than or equal to Y)

N=L+3 variable and numeric expression (YES if N is equal to the sum of L and 3)

A$ = "Xyz" character variable and character constant (YES if the character string in A$
is equal to "XYZ")

P$x Q% character variable and character variable (YES if the character string in P$

is unequal to the character string in Q$)
* Comparison of variables with character variables cannot be performed.

* Character string comparison applies to the ASCII codes.

“THEN’' or ' ;" can be used differently, depending on what follows them.
THEN 160 {line number) ;3 PRTA
THEN #9 {program area) 3 Z2=X+Y

Application of the PRT statement

In the previous program, “OK" and “NG" will be displayed to show the result of the comparison. This
is the application of the PRT statement.

If PRT A is written, the numeric value in variable A will be displayed.

If PRT A’ is written, the letter A will be displayed as is.
In other words, the item enclosed by quotation marks is handled as the character itself and displayed as is.

Example: PRT A PRT "A PRT “ANSWER"
4 4 4
10 (if A =10) A ANSWER
PRT X PRT X" PRT “N="1N
§ $ ¥
23 (if X =23) x N=ca15 (if N =15}

Example 2: Obtaining maximum and minimum value is shown below.

10 INP A

20 B=A

30 c=A

40 1=1

5@ INP A

60 IF A=@ THEN 110
70 IF A>B:B=A

80 IF AKC;C=A

90 I=1+1

The INP statement on line 10 is used to input the
initial data. Initial data is both the maximum value
and the minimum value. Therefore, it is processed
together with the data on line 20 and line 30 and
the initial data is assigned with maximum value B
and minimum value C.

Line 40 uses variable | to count the number of data.
So, 1" is input as the initial data. The input state-
ment of line 50 is used to input second and further
data. So, the procedure is repeated by the GOTO
statement on line 100. If data "0’ is input using
the IF statement on line 60, it will cause termi-
nation.

In other words, if 0" is input using the INP state-
ment on line 50, control jumps to the PRT state-
ment to output the result using line 110.

The IF statements on line 70 and 80 judge whether
or not the input data is greater than the maximum
value of the data already input or smaller than the
minimum value and accomplishes replacement.

Upon completion of all data input, the number of
data and the maximum and minimum value are
displayed using line 110.

® Various GOTO Statements and IF Statements

Output 1; B; C

Here we will take a look at some examples of applications using GOTO and |F statements.

Example 1: A program for determing the greatest common measure according to Euclid’s algorithm.
Flow chart

10 INP A.B

20 L=A

30 sS=B

40 IF S<@ THEN 90
5@ R=ABS(L-S)

60 L=S

70 S=R

80 GOTO 40

90 PRT A B L

100 END

R« |L-8]
L<S
S« R

According to Euclid’s algorithm, the second block of data is subtracted from the first block of data. Then,
that result (difference) is subtracted from the second block. Then, subtract that difference from the pre-
ceding result. This is repeated until the difference becomes zero. When this happens, the previous differ-
ence is the greatest common measure. The greatest common measure of 63 and 36 is shown below.

Variabie
L 63 36 27 9 18 @ < greatest common measure

S 36 27 9 18 9

R (difference) 27 9 18 9 9 < when O

In this program, the variables to obtain the differences are designated L and S respectively. The difference
is assigned to R temporarily, then L and S are replaced by S and R respectively and the same operation
is performed repeatedly (loop).

The IF statement on line 40 determines whether S, that is the difference after replacement, is zero or not.
If zero, L represents the greatest common measure, and data A and B and their greatest common measure
are displayed. If not zero, the difference is determined repeatedly as directed by the GOTO statement

on line 80.
The IF statement is used to make decisions on which command (operation) is to be performed based on

the result of computation.
Also, the replacement operations on lines 50 to 70 deserve special attention. Data A and B are initially

assigned to L and S and their difference is temporarily assigned to R. Then the difference between L and
S is determined again with L and S replaced by S and R respectively. This process is repeated until a dif-
ference of zero is obtained.

The relationships between L, S and R are shown below.

L S R
Initial 63 36 0
Subtract {1st time) 63 36 27 R = ABS (L-S)
Substitute (1st time) 36 27 27 L=S,S=R
Subtract {2nd time) 36 27 9 R = ABS (L-S)
Substitute {2nd time) 27 9 9 L=S,S=R
Subtract (3rd time) 27 9 18 R = ABS (L-S)
Substitute {3rd time) 9 18 18 L=S§,S=R
Subtract (6th time) 9 9 0 R = ABS (L-S)
Substitute (6th time) 19} 0 0 L=S,S=R

1\

Greatest common measure

Note: |f the order is changed in the above process, the significance of the substitution operations will
be lost.

Example 2: Make a program to determine the least common multiple.
10 INP A.B

20 1=1

30 M=AXI

49 IF M=INT(M/B)>XB THEN 70
50 1=1+1

60 GOTO 30
70 PRT A.B.M
80 END

NO

This example program first inputs data A and data B and

multiplies the initial value of A by one, two, three and so Output
on until the result of that multiplication becomes equalto ~ / __A.BandM
the least multiple of the value of B as tested by an [F

statement.

The IF statement on line 40 compares variable "M’ with [INT (M/B) is a function command that]

End

the numerical expression "INT (M/B) XB". In other words, makes the result of (M/B) an integer
variable “M" is compared with the result of the numerical by removing the decimal portion.
expression “INT (M/B) XB". This method is the same as:

N=INT(M/B) XB

IF M=N THEN 70
However, the method used here saves lines and the amount of memory.

Then, multiplier I is increased one by one and, using the GOTO statement on line 60, is multiplied and

judged again.
The variables used here are A, B, M and I. A and B are the two data. Since M is a multiple of A, it is easier

to understand the value of M later.
Multiplier I is incremented one by one to produce a new multiple. It is often used as a variable which is

incremented upon each occurrence of looping.

Make a program to determine the square root according to dichotomy. The program is as

Example 3:
shown below.
20 INP A
49 B=B/2
50 G=C+B
60 IF G=H THEN 120 B-A
70 H=G
80 E=G12 B« B/2
90 IF A=E THEN 120 G C+B
100 IF A>E;C=C+B VES
110 GOTO 40
120 PRT G <o
130 END pups
E<Gt2

Output G

48

According to dichotomy, one half of the value of data A is first determined and the square of the one half is
tested to see whether it is equal to the value of A or not. If not, one half of the one half is further deter-
mined and squared until the approximate value of A is obtained. The computation process is shown below.

1 15 2
f T R s O !
2x 4 1.25 1.375 1+1x+

In this program, the “VAC' command on line 10 is used to clear the memory. Then data A is input. This
data is used later in the comparison operations of the IF statements. Direct changes cannot be made. So
changes are made by assignment to B and B is changed.

The |F statement is used here to determine the approximate value at line 60.

The upper limit of the computing digits is determined. Then G and H are used to determine the point at
which the highest limit is reached and when the result is equal to the previous result, the operation is
terminated.

The IF statement on line 90 is the same as the |F statement in example 2. If the square root can be divided,
the square of the result determined here and data A will be equal and the result will be displayed.

The IF statement on line 100 tests to determine in which of the two equally divided parts of the result the
solution {approximate value) lies.

The IF statements in this program are used differently from before, but the function of each IF statement
is the same as before.

The program itself is somewhat complicated, so a combination of IF statements is required. The |F state-
ments on lines 90 and 100 both compare A and E with each other. The flowchart for this operation is

shown below.

(A>E) (A=E) (A<E)
However, BASIC does not provide for the use of three-branch IF statements. Instead, a combination of dual

|F statements is used.
The |F statements have different effects depending on where they are used in a program, as in Example 1

and Example 2. :
In Example 1, an |F statement is used at the beginning of the loop so that it may cause a jump to END

prior to the execution of the operation.

In Example 2, however, operations are executed and then testing of the specified condition is performed.
These two methods show that, depending on the data, the IF statement can be entered at the beginning of
a loop, as in Example 1, or at the end of an operation, as in Example 2.

® FOR-NEXT Statement
The FOR-NEXT statement is used when the number of occurrences of the same loop operation is known.

® FORNEXT Statement Function
The FOR-NEXT statement is composed as shown below.
FOR variable = 1 TO m STEP £

initial value increment = variable or numeric expression
terminal value

Flow chart
f=n YES
>m
l—14+Z
lNo

Operation command of numeric expression, etc.

NEXT variable

This statement commands the action specified between "FOR’ and “"NEXT" to be repeatedly executed
while a variable changes from 7 to 11 in increments of £. Control proceeds to the line next to “NEXT"

when the variable is changed to m1.
For example, the program below shows how to execute a given action while variable 1 increases from 1 to

10 in increments of 2.
FORI=1TO 10 STEP 2

This STEP can be omitted if the variable increases in increments of one.

FORI=1TO 10 STEP 1 is the same as
FORI=1TO 10
* The FOR-NEXT statement only increases a variable in increments of a specified value and cannot de-
crease it. If a variable is to be decreased from 10 to 1, then it must be written as a negative number as in
“STEP —1".

n n 14
Example 1: Make a table of £, Zi?, 2 i3, with n ranging from 1 to 50.

=1 =1 i=1

This program is shown below. A<O
10 VAC B+« 0
20 FOR 1=1 TO 50 STEP 1 ——

30 A=A+ 11
49 B=B+I112 ————— >50
50 C=C+113 AR

60 PRT I|,A.B.,C -

70 NEXT 1 A—A+l
B«~B+11t2
80 END C<C+113

End
Output
I,A, B C

This example can only be done using a FOR-NEXT statement. The totals of 7, i* and i* (_Zn)) are dis-
played while variable 7 is increased from 1 to 50 in increments of one. =1
Namely, the operation specified between “FOR " on line 20 and “NEXT " on line 70 is re-
peated 50 times as I is increased from 1 to 50 in increments of 1.
This example can be accomplished using an IF statement.

10 VAC

20 1=1

30 A=A+

49 B=B+112

50 C=C+I113

60 PRT 1.,A,B.C

70 1=1+1

89 IF 1=51;END

9@ GOTO 30
In this manner, if we compare the example using the FOR-NEXT statement with the example using the IF
statement, the function of the FOR-NEXT statement will be clearly understood.

In other words, the FOR-NEXT statement combines the testing functions of an IF statement and a GOTO
statement as well as an incrementing function.

20 FOR I1=1 TO 50 STEP 1={>{7®

80 IF 1=51;END
80 NEXT | = { 90 GOTO 30
In this manner, the FOR-NEXT statement has both an incrementing and testing function, so it is a very
flexible and convenient command when the number of occurrences of a loop operation is known.
—_ 50._.

Example 2: Make a program to produce a table of sine functions from 0 to 1 in increments of 0.01.

This program is shown below.
To MODE 4
2@ FOR 1=0 TO 1 STEP 0.01
30 PRT SIN | <o [N
49 NEXT | 1<1+0.01" "/
5@ END
Output
SIN i

End

This example determines the sine functions from 0 to 1 in increments of 0.01. The FOR-NEXT statement
increments can be made using 0.01 increments. This incrementation can be accomplished because this
equipment’s internal computation system uses a decimal system. SIN I can be obtained and input using the

statement on line 30.
“MODE 4" of line 10 is to specify “‘degree” for the unit of angle. “MODE 5" and “MODE 6’ specify

“radian’’ and "gradient’’ respectively.

® Various Loops

Example : Determine the nth number in a Fibonacci series.

A Fibonacci series is a series of integers in which each integer is equal to the sum of the two preceding
integers. In other words, the sum of the first and second numbers is equal to the third number, the sum of
the second and third numbers is equal to the fourth number, etc.

o,1,1,2,83,5,8,13,21, 34,
0+1 1+1 142 2+3

This program is shown below.
10 A=0:B=1
20 INP N
30 FOR 1=3 TO N
409 C=A+B
50 A=B
60 B=C
70 NEXT |
80 PRT C
9@ END

Variable A, B and C represent the variables in the series. A is the value of the preceding number, B is the
value of the next number and C is the total (the number following B).

Also, an initial value of 0 is assigned to A and an initial value of 1 is assigned to B. Then the operation is
started at the third position.

The FOR-NEXT statement starts the loop beginning at 3 and continues it up to the desired point (Nth
value). The initial value of the FOR-NEXT statement does not necessarily start from 1.

The substitution operations on lines 40 to 60 require special attention. The sequence cannot be changed.
Once the sum of A and B are input into C, then B is input into A, then C is input into B.

Unless this sequence is followed, substitution cannot be performed correctly.

The manner in which this FOR-NEXT statement is used differs from the previous example. Therefore,
variable N is used because the terminal value is changed based on later inputs.

This example can be accomplished using an |F statement. A sample program using an IF statement is shown
below.

10 A=0:B=1:1=3

20 INP N

30 C=A+B

40 A=B

50 B=C

60 IF IXN;I1=1+1:GOTO 30
70 PRT C

80 END

In this program, the |F statement on line 680 increments variable I while effecting the function of a GOTO
statement. Initial values are set using a multistatement on line 10.

® Nesting
FOR-NEXT loops can be used to embed up to 8 levels. This embedding is called ‘'nesting”.

This is an example of 4 levels ot nesting.
One FOR-NEXT statement is input within
[FOR ------------------- another FOR-NEXT statement as shown.

When embedding a number of these, care must be used concerning the NEXT statements which correspond
to their FOR statements and their variables.

Also, the nesting must be done as shown above with the loops completely within one another. Overlapping
FOR-NEXT loops cannot be used with a portion of the loop falling outside as in the following example of
an incorrect nesting.

This type of FOR-NEXT loop cannot be used.

X
——FOR
—FOR
] THEN...........
—NEXT......o
——NEXT. ...

Y

O

4-5-2 Arrays

Arrays, fall into two categories: one-dimensional (list) and two-dimensional (table} depending on the ele-

ments, both of which may be used.
A one-dimensional array is represented by A(i) or B{j), with (i) or (j) being subscripts. A two-dimensional
array is represented by x(i,f) or y{n,m), with (i,j) or {n,m) being two-variable subscripts.

Examples of the two types are shown below.

One-dimensional array Two-dimensional array

2 3]als][s6!l 7]8]a9
A0 | A1 | A2 | A3 | A4 | AB| A6 | A7 | A8 | A9
BO B’l 82 P R FEE R RN e 88 89
CO C‘l PP Y P S RIS PP IR Cg

~

S~
(@]
—_

] A
AOQ
Al
A2
A3
A4
AB
AB
A7
A8
A9
BO

(@}
(@]

_
—_

QO |N[OJO | B]IW|N
CQlO| | N[O|OIHTW[IN

—_
—_

This equipment’s arrays use memory AO to A9 to T9 increased using memory expansion.

One-dimensional array is represented by A(0) to A(199).

Two-dimensional array is represented by A(0,0) to A(19, 9).

In other words, A(0) and AO are the same memory, A(10) and BO are the same memory, A(1,0) ana tu are
the same memory, and A(18,7) and S7 are the same memory.

Furthermore, only A can be used as the variable in the array.

*When the array is used, it is necessary to expand the number of memories according to the size of the

array.
This operation is performed using the manual.

DEFM n (nisin a range of O to 19 and should be 1 or greater when used in an array)
B9 (See Page 12 for details.)

This operation should be done. If the number of memories is smaller than the size of the array, an error will
result when operated. :

= One-dimensional Arrays
A one-dimensional array is an arrangement of 0 to 199 elements with subscripts attached.

Example: A(0), A(1), A(199)

Example 1: Make a program to display the value of i in a one dimensional array A(i) as it changes from
110 10. Flow chart

This program is shown below.

1@ FOR 1=1 TO 10
20 ACI)=I R O
30 NEXT | <1+ 7/
49 FOR 1=1 TO 10
50 PRT ACI) Afl) <1
6@ NEXT |1 -
70 END =)
The FOR-NEXT statements on lines 10 to 30 have been J<i+1 /
explained previously. However, A{l} is used on line 20 and
a value of 1 is assigned. Also, the FOR-NEXT statement on Output A (1)
lines 40 to 60, in a similar manner, display the value of the
array contents using the PRT statement on line 50. End

Furthermore, before executing this program, it is necessary to expand the memories to 20.

DEFM 2 &8
In this manner, the array stores data as separate variables simply by changing the elements without changing
the names of the variables. So, this is a convenient function when used with the FOR-NEXT statement.

Example 2: Make a program to display the difference between the average score and the individual scores
by inputting the test scores of 50 students.

10 A=0
20 FOR I1=1 TO 50

30 INP ACI)

40 A=A+ACI) T

50 NEXT | P >50j

60 N=A/50 N < A/50

70 PRT N .

80 FOR I=1 TO 50 -

9@ PRT ACI)-=N

100 NExT' |

110 END A
For this program, the scores are input on line 30 using e+
array A(I).

Sum total is obtained using line 40. An array is used for Output
. . Ali)—N

score input (separated). Then, the average score is calcu-

lated and the difference between the stored data (scores)

and the average score is obtained and displayed.

In this manner, if an array is used to make a program End

when many data are input, the data can be input simply

using a short program.

If an array is not used, it will be as follows:
All) e—>A
A(2) «——>B
A(B)«——cC

and the input statement will be
INP A,B,C, ..cocv...

and the separation of the data will require a lot of time.
- 54 —

® Two-dimensional Arrays

A two-dimensional array is a combination of multiple one-dimensional arrays. The format is A(#,j), A being
the name of the array and i and j being elements. The variables used as variable names are similar to the
variables used in a one-dimensional array. The elements are [and j, which are numeric expressions.

Example 1: Make a program to obtain the average score of each subject using the sum total of the scores
of 5 students in language, mathematics, physics and sociology.

This program is shown below. Start

10 VAC
20 FOR =1 TO
30 FOR J=1 TO

u

<1

=+ 1 >4>]

40 INP ACI1.J) = I

5@ NEXT J Je1 — |~ | +1 >4

G0 NEXT | l
70 FOR 1=1 TO 4 Je1 O\

82 FOR J=1 TO 5

>5
- J+

90 A=A+ACI.J) IR R
100 NEXT J A<A+A(])
11@ PRT J
120 A=0
130 NEXT 1 Output A/5
149 END

oh

The input portion and output portion can be separated into 2 parts. FOR-NEXT statements are used twice
on lines 20 to 60 and perform input into the two-dimensional array. FOR-NEXT statements are again used
twice on lines 70 to 130 and the average score is output at this time. .

In other words, a two-dimensional array is a combination of multiple one-dimensional arrays.

111120131415
21122232425
31/32({33|34|35
41142434445

4 + 4 + 4 + 4 + 4 =20 4 X 5 =20
The two variables which form the elements of a two-dimensionat array may be changed either concurrently
or separately. On these occasions, it is convenient to use FOR-NEXT statements twice. In this program,
i and j are used. First, determine i, then change j. Subsequently, i is changed, then j is changed again.
This operation is repeated over and over. Either i or j may come first but the sequence of data input will
differ.
FOR I=1 TO 4
FOR J=1 TO 5——> A(1,1)
A(1,2)
A(1,3)
A(1,4)
A(1,5)
Al2,1)

A(4,4)
A(4.5)
—-55—

FOR J=1 TO 5
FOR I=1 TO 4 ——> A(1,1)
A2,1)
A(3,1)
Al4,1)
A(1,2)

A(3,5)
A(4,5)

Let’s consider a two-dimensional array with variables like A(1,1) or A(2,3) arranged in a matrix format.

Example 2: Make a program for collection of data to obtain the sum total of the matrix. Furthermore, the
number of data will be input later.

This program is used to store all of the data for obtaining the sum total of the matrix in a two-dimensional

array.

30 FOR I1=1 TO M
40 FOR J=1 TO N
5@ INP ACI,J)

60 NEXT J TN

70 NEXT | o M)
80 END l
T D

Here, the program is only for input. Actually, it does not
terminate after line 80, but the program continues.

The FOR-NEXT statements on lines 30 to 70 are used
to input data in the same manner as shown in Example 1.

20 INP N.M Start

Since this program is only for the input portion, the program for computation and output is added accord-
ing to the actual use:

For example, to display all the data.

10 VAC

20 INP N,M 11 >g>

30 FOR I=1 TO M e 1+

40 FOR J=1 TO N]
5@ INP ACI,J) e

60 NEXT J >N)

70 NEXT |
89 FOR I=1T TO M
90 FOR J=1 TO N
100 PRT ACI,J)
110 NEXT J
120 NEXT 1
130 END
This is added from line 80 on. The method of using is the same as the FOR+NEXT statements on lines 30
to 70. The only difference is that the output is substituted for the input.
In the above manner, a two-dimensional array is a kind of variable. it has 2 elements which are subscripts
attached to the variable name.

For example, the variable is determined by the numerical value of i and j in A{i,]).

Display X{1,J

4-5-3 Input/Output Commands
This chapter comprehensively explains the input/output commands used with this equipment.

® [nput Commands
An input command is a command used to input data during program execution and uses the INP statement

and KEY functions.

® |INP Statement
The INP Statement is used to manually input data into the variables during program execution when 2" is

displayed during awaiting input condition.
The INP statement is composed of

INP [“character string’’], variable, [*“character string’’], variable..
These character string can be omitted but once they are input, the character string is displayed before the
awaiting input condition. It can be made into a message. Variables are numerical variables, character varia-
bles and exclusive character variable ($), and input data are assigned.

Example:
When INP A ?
When INP“A="",A a="

The process will proceed to the next step by inputting data and pressing the B8 key during the awaiting
input condition using the INP statement.

Example: Add a message to the INP statement for the program for determining the sum, difference,
product and quotient of 2 variables.

This program is shown below.
1@ INP “A=",A,”"B=",B
20 S=A+B
30 D=A-B
49 P=AXB
50 Q=AsB
60 PRT S.D.P.Q
7@ END

Program execution is shown below.

Operation:

RUNED A="
45E B="?

23 68
22
1035
CONT 1.956521739

In this manner, the character strings which are written in the INP statement are displayed as messages and
key input is easier.

For this INP statement, if character data is input for the numerical variables, an error will occur. 1f the error
is cancelled using the @8key, ' ? " will be displayed again and return to awaiting input condition.

Also, the input for the numerical variable can be input as a numerical expression.

Furthermore, since the awaiting input condition cannot be cancelled by just pressing the 8 key, use the

following procedure to cancel it.

1. If the B8 key is directly pressed without making any input, “STOP" will be displayed and program
execution will stop. Then, if the @ key is pressed, the awaiting input condition can be cancelled. Press
the [CoND key to continue the program.

2. If are pressed to redesignate the RUN mode, the awaiting input condition will be cancelled. In
this case, the program cannot be continued.

® KEY Functions

This function reads one character for each key which has been pressed during program execution.

This function, unlike the INP statement, cannot be accomplished during the awaiting input condition. The
program progresses as scheduled, so if there is no key input, nothing will happen.

The KEY function is composed as shown below.

Character variable = KEY
The character read by the KEY function is assigned to the designated character variable,

Example:
10 A$=KEY:IF A$=" " THEN 10
20 IF A$="1" THEN 100
30 IF A$="2" THEN 200
40 IF A$="3" THEN 300
50 GOTO 10

This program is only for data input and separation portion, using the KEY function on line 10, it tests to
see if the character data read was keyed in using the next IF statement.

Even if the BBkey is not pressed, this KEY function is capable of reading only the first key input.

However, it does not stop like the INP statement. So, by combining with the next IF statement, it becomes

an awaiting input condition.
Also, lines 20 to 40 compare the contents in the read character variables and determines the jump destina-

tions. In this manner, the KEY function can only read the character of one key.

® Qutput Commands

In the output command, there are a PRT statement to display calculation results or data and a DMS state-
ment to display the value of the numerical expression after conversion to sexagesimal degrees, minutes and
seconds. Also, there is a WAIT statement to determine the display time.

® PRT Statement
A PRT statement is composed as shown below.

. N Numerical expression .
PRT [Output control function {D {Character expression } [{ ;}]

L}

{ | either one of the enclosed contents can be used
[] enclosed contents can be omitted

This PRT statement displays the value of the numerical expression or the numerical variable and dis-
plays the character strings enclosed with ** '’ or character variable contents.

Example:
10 INP “A=",A,"”"B=",B
20 C=INT C(A/B)>

30 D=A-BXC
4@ PRT A;7":B;”=";C;"...".D
50 GOTO 10

This program computes the remainder, as in the quotient and remainder when A is divided by B.

The values of the variables are displayed in the manner as on line 40.

The items enclosed by ** ' are displayed as the characters themselves.

Furthermore, the manner in which the "*,* and "' ;" are displayed between the variables and character
strings is different.

In the case of " ; "', the next data is displayed following the previous display.

In the case of ', ", the next data is displayed after the previous display is cleared once.

When the display time is not designated by using the WAIT statement in the case of ,", "STOP" is
disptayed and the process stops. To continue the display press the key.

® DMS Statement
The DMS statement is a command to display the value of the numerical expression or the variable after’

conversion to sexagesimal. It displays decimal items in degrees, minutes and seconds.

Example:
1@ INP N
20 DMS N

30 GOTO 10
This program inputs some data. That data is converted as is to sexagesimal. Even if the “PRT" com-
mand is not used, the display can be given only by the DMS statement.
The display is as shown below.
000°00°00.00"
N
Seconds (0.00 to 59.99)
Minutes (0 to 59)
Degrees (0 to 99999)

Furthermore, when the value of the numerical expression is greater than 99999, it is displayed as a decimal.
The decimal portion of the seconds will be displayed rounded off to the third digit.

e WAIT Statement
The WAIT statement is a command to determine the display time using a PRT statement or a DMS state-

ment. Display continuation using the key is not required. |t displays for a certain time only and
then proceeds to the next program.
The WAIT statement is in the form as shown below.

WAIT numerical expression (0 < numerical expression < 1000)

The decimal portion of the numerical expression is cut off. The display will stop for the time which is
designated by multiplying the value by approximately 0.05 seconds.

When no designation is made using this WAIT statement or when the value of the numerical expression
is greater than 1000, it will come to a complete stop. “STOP" will be displayed and go to an await input
condition.

Example:

10 WAIT 5

20 FOR 1=1 TO 100

30 PRT 1|

40 NEXT |
This program displays the value from 1 to 100. When no designation is made using the WAIT statement,
the process will stop after displaying the value of I. The next value is displayed by pressing the key.
However, when the display time is designated using the WAIT statement, display will be made approxi-
mately every 0.25 seconds.
The designation using this WAIT statement is cancelled when power is turned OFF (including auto power
off) or at program execution starting time.

® Qutput Control Functions
Output control functions designate the location of the output and the type of output.

® CSR Function

This is a control function which is used in a PRT statement. |t designates the location of the output on the
display (20 positions) using the PRT statement.

The format of the CSR function is shown below.

PRT CSR {:} numerical expression (The decimal portion of the numerical expression is cut off and the
value is 010 19.)

It uses the value of the numerical expression to determine at which unit from the left of the display to

begin to output the data.
Furthermore, the method for counting the units on the display is shown below.

RUN DEG

JOUHD000000o000oo0goo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Example:
10 INP X
2@ PRT X:CSR 8:X12
30 GOTO 10

This program obtains the square of data already input and displays the result as well as the data. The
CSR function is used in the PRT statement on line 20.

The initial data ""X"" is displayed as is from the left side and the next “X 12’ is displayed from the eighth
position from the left using the CSR function. .

The program, when executed, will be as shown below.
Operation:

RUNGED ?
7 69 7 49
?
45 45 2025
?
852 @ 852 725904

In this manner, since the two types of output are constantly displayed from a certain position, it is easier
to see.

"

* When there is a ;" following “CSR", it is displayed from the designated position but when *' ,
is used, display will not be made unless the display is cleared once. So the display will not be made
continuously.

o SET Statement
The SET statement explained the number of effective digits designation and decimal designation for

manual calculation but here we will explain how designation is made by writing in the program.
In the SET statement example shown below, E designates the number of effective digits, F designates

the decimal and N cancels the designations.

En
SET Fn (mis0to9)
N
Example 1:
10 SET E4

20 MODE 4:WAIT 10

30 FOR X=0 TO 180 STEP 5
49 PRT SIN X

50 NEXT X

60 SET N

70 END

This program obtains sin x in 5 degree increments of x from 0 to 180 degrees.
In order to obtain the number of effective digits up to 4 digits in this example, sin X is obtained using

"SET E4".
If the SET statement is written at the beginning of the program, all of the subsequent displays ({result

output) will be displayed with an effective number of digits of 4 digits.
If calculation is continued, the result can only be obtained up to 4 effective digits. So, “SET N is used

on line 60 in order to cancel the designation.

Example 2: Designate the number of decimal positions to be 4 digits for the program in Example 1.

1@ SET F4

20 MODE 4:WAIT 10

30 FOR X=0 TO 180 STEP 5
40 PRT SIN X

5@ NEXT X

60 SET N

70 END

In this manner, the number of output digits can be controlled using the SET statement similar to manual
calculation.

® Output Formatting
Computation results may not always be output in a specified format on the display because the posi-

tions of the decimal points or number of digits involved differ according to the vatues of the results. In
this case, the output format can be specified using formatting to make it easier to read.

The symbols used for formatting are ' # ' and A4 g is used to specify the number of digits in a
mantissa and ** 1 " is used to designate the display of exponents.

LR R E N (Number of #is 10 or less)

Exponential display designation
Number of digits in the decimal portion
Decimal point position

Number of digits in the integer portion

The ** #' to the left of the decimal point designates the number of digits in the integer portion.
The ' #" to the right of the decimal point designates the number of digits in the decimal portion.

The final "' 1 ' designates the display for attached exponents.

. . X =0.123456789
Format Explanation Display when \ _ 15 3456789

Integer portion 1 digit, no decimal - -
©# portion x=0 v=#

Integer portion 1 digit, decimal - -
@#. ### e digs ! X =0.123 V=# #HH

@## HE#H#Y L’:ﬁ?g; %Oéfgft”s 2 digits, decimal X =0.12346 Y =12.34568

Integer portion 2 digits, decimal portion - . =
@##. ##1 2 digits, exponential portion attached X =1.23e-01 Y =1.23¢ 01

Integer portion 1 digit, decimal portion _ _ -
©#. ###1 3 digits, exponential portion attached X =12366—01 Y =1235€ O1

* For the case as shown in Exam‘ple @ and Example @ , when the number of integers in the mantissa
portion overflow, display becomes impossible and the output format itself is output.

Example:
10 MODE 4:WAIT 10
20 FOR X=30 TO 180 STEP 30
30 PRT SIN X:;COS X
40 NEXT X
5@ END

This program is used to obtain sin X and cos X every 30 degrees. Both are displayed continuously. How-
ever, if left as it is, the display of both will cause an irregular display which will be difficult to read. In
this case, to straighten out the display and when 10 digits are not needed for the mantissa portion, the
display can be made easier to read by using formatting.

When formatting is added to the program it will be as shown below.

1@ MODE 4:WAIT 10

20 FOR X=30 TO 180 STEP 30

30 PRT ##.##1;SIN X;CSR 10:;COS X
49 NEXT X

50 END

Using this formatting, both results can be displayed at the same time and the output positions can be

arranged.
Therefore, the display will be easier to read.

Program execution is shown below:

Operation:

RUN (&9 5.00e-01 8.66e-01
8.66e-01 5.00e-01
1.00e 00 0.00e 00
8.66e-01 -5.00e-01
5.00e-01 -8.66e-01
.00 00 -1.00e 00

4-5-4 Character Functions

Character functions are related to character variables (A$, BS, §, etc.). The handling method for these
is different because they are used to input characters instead of numeric values. Therefore, these char-
acter functions determine the size of the character variables and operate to extract some characters from
character strings in character variables.

LEN and MID

A LEN function is a command to count the number of characters in a character variable. The size of the

character variable can thus be known,
A MID function is a command to extract some characters from the exclusive character variable ($). It is

used for rearranging the character variables.
Since the LEN function can tell the size of the character variable, it is a convenient means of reserving

output space for character variables or for dividing them when the size is not fixed.

Example:
10 A$="123"
20 B$="456"
30 C$=A%$+B$
49 D=LEN(CS$)>
5@ PRT D
6@ END

This program displays the size {number of characters) of the character variable by adding character vari-

ables A$ and BS.
Character variables can only perform addition. However, since the size of the character variable is not

known using that result, the LEN function is used to determine the size of that addition.
Only character variables can be used for the LEN function.

The format of the MID function is shown below.
MID (m[,n]) {m, n: numerical expression)

It extracts the 1 character portion from the mth character of the character string stored in the exclusive
character variable ($).

If mis omitted, all the characters after the mth character will be extracted.

Furthermore, the decimal is cut off for both mand 7, and their values are 1 to 30. If the sum of m and
nis greater than the stored number of character variables plus 1, an error will occur.

Example: when $ = ""ABCDEFGHIJ"
To extract four characters from the third character on = MID (3,4) ... CDEF

To extract two characters from the first character on > MID (1,2) ... AB
To extract all characters from the fifth character on > MID (5) . .. EFGHHJ

Example:
10 INP $
20 N=LENC($)>72
30 X$=MIDC1,N>:Y$=MID(N+1)>
49 PRT X$.Y$
5@ END

This program divides the input character strings in two using the LEN function and the MID function
and displays.

This determines the sizé of the exclusive character variable $ on line 20. Those halves are assigned 1o
N and the first half and the second half are divided using the MID function.

In this manner, when the size of the input character string is not fixed, the halves or thirds cannot be
extracted, so the size is determined using the LEN function.

Furthermore, in this case, the character string that can be input into $ is limited to 30 characters.

However, since the number of characters in X$ and Y$ is limited to 7 characters, the number of char-

acters input into $ is limited to 14 characters.

4-5-5 Subroutines

A subroutine (also called a subprogram) has a main routine which is different from the programs (also
called main routines) considered previously. The subroutine is called from the main routine and, upon
completion of the operation, returns to the original position in the main routine.

In other words, using the command (GSB) to jump from within the main routine to the subroutine, it
jumps from that position to the designated subroutine. After the subroutine operation is completed, it
returns to the position (GSB command) in the main routine where the jump to the subroutine occurred
and the main routine process is continued.

—— 100 GéB 1000 subroutine callout (jump) command
[1000 A=B
subroutine area
1100 RET command to return to main routine

The commands required for this subroutine are “GSB’ and “RET" statements. The command to jump

(callout) to the subroutine is the GSB statement and the command to return from the subroutine to the

main routine is the RET statement.

This GSB statement is used in the following formats.

(1} GSB numerical expression (the numerical expression is cut off at the decimal and uses line numbers
1 to 9999) '

(2) GSB #numerical expression (the numerical expression is cut off at the decimal and uses 0 < n < 10)

The first method uses direct designation to write the line number directly following ““GSB’* and can in-

directly designate the subroutine location using the value contained in the variable.

The second method uses a subroutine in another program area (PO to P9) to designate directly and indi-

rectly.
Furthermore, neither will return unless the RET statement is written at the end of the subroutine.

m Subroutine Fundamental Programs
Here we will explain how to arrange the subroutines using actual program examples.

Example 1: Make a program to determine the surface area and volume of a regular tetrahedron, in which
the length of the sides is A, computed down to three decimal places. Provided that a round-
ing program has been incorporated into a subroutine.

S 3 2 Main routine Subroutine
- V3a
veN2 g
12 Y =SGN X
Z+~ IX1%10%0.5
1@ INP A X< INT Z/10°%Y

20 X=SQR 3%At2

3@ GS B 1 00@ / Surface area display /

40 PRT X ~ ,
5@ X=SQR 2/12%At13 N
60 GSB 1000 Y7 *
70 PRT X
80 END
1000 Y=SGN X ,
1010 Z=ABS XX1013+0.5 /" Volumedisplay /

1020 X=INT Z/1013XY

1030 RET
The main routine for computing the surface area and volume of the regular tetrahedron can be easily
understood, as it is similar to the programs considered previously.
The difference is the rounding program included in the main routine as a subroutine from line 1000 on.
This subroutine has the function of computing the surface area and volume, as determined on lines 20

and b0, down to three decimal places by rounding.
- 64_

The subroutine can be used as many times as desired.
It is used twice in this program, first for rounding the value of the surface area and second for rounding

the value of the volume.
If a subroutine is not used and only a main routine is used as in the past, the program will be longer, as

shown below.

10 INP A
20 X=SQR 3X%At2
30 Y=SGN X

49 Z=ABS XXkx101t3+0.5
5@ X=INT Z/7/1013XY
6@ PRT X
70 X=SQR 2/12X%At3
80 Y=SGN X
9@ Z=ABS XX101t3+0.5
100 X=INT Z71013%Y
1190 PRT X
120 END

This program and the program using the subroutine described above perform the same processing (opera-

tions) but the program using the subroutine is shorter and simpler.

In other words, the subroutine is used to simplify the program by eliminating repetitive operations.

* In this example, since the rounding program is incorporated into a subroutine, "PRT X' is not included
in the subroutine. Actually, in this program, lines 30 to 60 and lines 80 to 110 are the same and this
portion is incorporated into a subroutine.

This subroutine is also a part of the main routine, so it is not incorporated within the main routine but

is incorporated after the end (”END’’) and must be ended with an RET statement. If it is incorporated

along the way in the main routine, it will be read as the main routine and processed repeatedly, thereby
causing an error upon execution of the RET statement.

Therefore, as in this example, the subroutine area must be separated by starting it at line 1000 or 5000.

The subroutine is similar to the GOTO command (GOTO statement), and is considered a jump command

but differs in that an RET statement is always attached so that it returns to the GSB statement after

completion.

Example 2: Make a program to determine the surface area and volume of a regular tetrahedron and a
regular octahedron in which the length of sides is A, computed down to four decimal places.
Provided that the main routine and the subroutine for determining the area and volume
are incorporated into PO and the rounding subroutine is incorporated into P1.

Regular tetrahedron

S=v3a?, veY2 43 PO P1

a
12 Flow chart
Regular octahedron \Surface area/ \ Volume / Rounding
S=2/3a?, V=-[:23—a3 T C sor D, LS*?" D,
P® 1@ INP A [xﬁN*\/s—xA’_]Lxh\/z_/MxA’—l Y = SGN X
20 N=) S Dom] Lo,
30 GSB 1000 ” Compute surface area " LL mons ” '_L Rou[ndmg ” I
40 M=12 Q End) C End) Display result
50 GSB 2000
60 N=2 End
70 GS B 1 0@@ ” Compute voiume ” .
80 M=3
90 GSB 2000 Ak
1 ®® E N D ” Compute surface arﬂl
1000 X=NXSQR 3%At2
19010 GSB #1 M3

1020 RET
2000 X=SQR 2/M¥At13 [[_Ccomputevoume]

2010 GSB #1
2020 RET 65—

i

P1 10 Y=SGN X
20 Z=ABS X*1014+0.5
30 X=INT Z/10t4%Y
40 PRT X
50 RET

Three subroutines are used in this program: two common portions for computing surface areas and vol-
umes, and a rounding program.
Using this method, commonly used computational operations can be incorporated into a subroutine for

repetitive execution just by changing the values of N and M. In this manner, if common portions are in-
corporated into subroutines, memory can be saved and contents and computation method can be under-
stood more easily.

Therefore, on lines 1010 and 2010 of this program, a subroutine is called out from a subroutine. This
method is called “nesting.” It calls out a subroutine from a subroutine similar to calling out a subrou-
tine from a main routine.

This nesting can be performed up to 10 levels (10 times), so any nesting beyond that causes an error.

In other words, it goes from the main routine to the first level subroutine. Then that subroutine acts
as the main routine and the next (second level) subroutine is called out. Even at this time, the RET state-
ment on which the subroutine is based must be written at the end of each subroutine without fail.

Similar to the rounding subroutine, this subroutine can be incorporated into another program area (in
this case, P1}. This method is convenient because it can be used as a subroutine in common with another

program (a program written in another program area).

In this manner, many subroutines can be used in one program.

In the case of “nesting”, however, up to 10 levels can be accomplished.

Main routine

J S
| Z\ /\ /\ A j
Subroutine Subroutine Subroutine Subroutine
Using this method, many subroutines can be used.
Main routine
- |
¥ 1
First-level First-[evgl First-level
subroutine subroutine subroutine Nesting up to 10-levels is allowed
Second-level
subroutine

In this manner, there is a way to omit the common portion using a subroutine. Also, when incorporated
in a complicated program, a subroutine is used when portions are separated into groups.

The GSB command in a subroutine is considered similar to a GOTO statement. In other words, it deter-
mines the subroutine area to which it jumps from the main routine and then operates to return to the
original position.
Furthermore, when the subroutine is written in the same program, it is necessary to write END at the
end of the main routine, and if it is repeated, it is necessary to write a GOTO statement.

...66.._

w Indirect Designation of a Subroutine

Similar to the explanation for the GOTO statement, indirect designation can also be used for a subrou-
tine.

The method of using is similar to that of a GOTO statement. It jumps to a designated subroutine and
then returns to the original position.

Example 1:

1@ INP N
20 GSB N+ 100
30 PRT XX6
4@ END
101 X=5:RET
102 X=1Q:RET
1903 X=15:RET
1904 X=20:RET
105 X=25:RET
106 X=30:RET
107 X=35:RET
108 X=40:RET
109 X=45:RET
110 X=50:RET
In this program, the subroutine is designated indirectly using the value of input N. When N is 1 to 10, it
goes to a subroutine between 101 and 110 and determines the value of variable X and displays the com-
putation result of X X 6.

In this manner, since the indirect designation of the GSB statement determines the jump destination
(subroutine) using the value of the variable, when the variable is one, it jumps to the first subroutine
(line 101).

When the variable is two, it jumps to the second subroutine (line 102), and so on. It designates indirectly
depending on the value of the variable.

Example 2: Use the indirect designation of the GSB statement to make the sorted totals program which
was given in a previous example and which used indirect designation of the GOTO statement
(5 divisions).
10 VAC
20 INP |
30 GSB 1+100
49 GOTO 20
19Q@ PRT A,B.C.D.E:END
101 INP J:A=A+J:RET
192 INP J:B=B+J:RET
103 INP J:C=C+J:RET
104 INP J:D=D+J:RET
195 INP J:E=E+J:RET

This program is almost the same as the previous example of an indirect designation of a GOTO statement.
However, the GOTO statement on line 30 is replaced by a GSB statement.

This method also basically inputs code numbers 1 to 5 on line 20 and uses indirect designation on line
30 and separates using lines 101 to 105 subroutine. Each department is totaled in the subroutine. For
this program as well, each subroutine is made one jine using a multistatement. Each line becomes one
subroutine, thereby making it easier to read.

Even in this case, the code number input on line 20 is 1 to 5. If any other number is used, an error will
occur when there is no jump destination.

4.5-6 General Functions

General functions include trigonometric functions such as sine, cosine and tangent, and built-in functions.
These functions are formatted by combining alphabetic characters on the keyboard. They can also be
entered with the “‘one-key command’’ using a single key and can be used as easily as operating a small
electronic calculator.

General functions may be used manually or incorporated within programs.

Function name Format Example
Trigonometric sin X SIN X SIN 30 SIN A SIN (N+5)
function cos X cos x COS3.14 COSI COS (L-3)

tan X TAN X TAN70 TANF TAN (F X2)
Inverse sin”' X ASN Xx ASN 0.07 ASNP ASN (Z+Y)
trigonometric -1 _
function cos™ X ACS x ACS /5 ACSD ACS (C-X)
tan™' X ATN X ATN 6.5 ATNV ATN (Q+0.5)
Hyperbolic sinh X HSN x HSN 26.8 HSN T HSN (T+E)
function cosh X HCS x HCS 1.45 HCSO HCS (R/2)
tanh X HTN X HTN 0.861 HTNH HTN (U+0.9)
Inverse) sinh™! x AHS x AHS 76.2 AHS G AHS (J+1)
hyperbolic cosh™! x AHC X AHC 16 AHSW AHS (SX2)
tanh™' X AHT X AHT0.91 AHTM AHT (H-E)
Square root Jx SQR x SQR69 SQRA SQR(RXS)
Exponential x
function e EXP X EXP8 EXPF EXP (D+L}
Natural
logarithm loge X LN X LN 43 LNP LN (U+T)
Common
logarithm log,, X LOG x LOG 246 LOGR LOG (G+15)
Integration . INT X INT X INT 347.457 INTV INT (Q+U)
{(Maximum integer
not exceeding X) INT —45.43
Fractionalization
(X with its integer FRAC X FRAC X FRAC 73.54 FRACN FRAC (H+B)
part removed)
Absolute value 1 X4 ABS x ABS —9.43 ABSL ABS (K/P)
Sign SGN x SGN 79 SGNE SGN (P-0)

{(If x>0, 1)

(iIfx=0, 0

(Ifx<0, —1)

Conversion of DEG DEG (39,34,15) DEGT DEG (R+5)
sexagesimal (Degree, Minute,
to decimal Second)
Degree Minute Second

Conversion of
decimal to sexagesimal DMS X DMS 12582 DMS Z DMS (P+0.05)
Coordinate conversions

Rectangular to polar RPC X,y RPC 14,20.7 RPCA,B

Polar to rectangular PRCr, @ PRC 45,2/m PRC F,F

Function name Format Example

Significant digit specification

Tx s dotarmined down 0 the RND (X, V) RND (123.456,2) RND (A, C)

10Y-th significant digit place RND (F+E, G—5)

by rounding)

Random number generation

(Uniform random number

generation in the range RAN # RAN #

0<x<1)

Factorial X! X! 8! Al (1+d)!

Unit of Degree MODE 4 One right angle = 90 degrees

angular measure . . bid .
Radian MODE 5 One right angle = > radians
Gradient MODE 6 One right angle = 100 gradients

* x and y are constants, variables or numerical expressions.
Since these functions are built in they can be used in a program at once.

Make a program to obtain the length of one side of a triangle using the angle enclosed by the
other two sides.

[C=+/a% +b? —2ab cosf |

10 MODE 4

20 INP A.,B.C

30 D=SQR (A1t2+Bt2-2XAXBXCOS DEG C)>
40 PRT D

50 GOTO 20

Since the angular unit “degree’ is used in the trigonometric function, MODE 4 appears on line 10 in this

program. Then, the lengths of the two sides and the enclosed angle are input.
In accordance with the formula, square root SQR, and cosine COS are written in the numeric expression.

Example 1:

Example 2: Make a program to obtain the amplifier gain dB with input voltage X and output voltage Y.
[dB =20-log;0 %2—]

10 INP X.Y

20 Z=20XLOG (Y’X)
30 PRT Z

49 GOTO 10

if the input voltage is X and the output voltage is Y, the formula can be written as shown on line 20 to ob-
tain the gain (Z).
Example 3: Make a program to generate three-digit random numbers using a random number generating
function and a significant digit specification function.
1@ N=RNDC(RAN#,-4)X1000
20 PRT N
3@ END

Since random numbers can be generated as 10-digit mantissa in the range 0 < x < 1, three digits must be
taken as significant digits and multiplied by 1000 to extract three-digit numbers.

4-5-7 Statistical Processing

Since statistical processing capabilities are incorporated in the calculator as well as the built-in functions, it

can be used easily.
These statistical processing capabilities include standard deviation calculation and regression analysis calcula-

tion for determination of correlation coefficients, etc.
_— 69 _

m Standard Deviation Calculation

Standard deviation calculation can be executed manually or written in a program. This chapter explains
standard deviation calculation using programs.

Furthermore, for manual calculation, refer to the section on manual calculation.

Example 1: Make a program to obtain the difference between each data and the mean by storing all the
data using a one-dimensional array.
10 SAC
20 INP ““N=",N
30 FOR I1=1 TO N
40 INP D
50 STAT D
60 ACI)=D
7@ NEXT |
80 PRT ~“MX=";MX
9@ FOR =1 TO N
100 PRT “NO.”";1:"=";ACI)-MX
11@ NEXT | '
120 END
The SAC command on line 10 in this program is a command to clear {’0") the statistical summation mem-
ory. The VAC command does not clear the statistical memory. Prior to performing statistical calculation, it
is necessary to use this command. The number of data is input on line 20 and, using the FOR-NEXT state-
ment, the number of times the data is input is determined.

In the FOR-NEXT statement following that, using the data input command "“STAT"’ for standard deviétion
calculation, data is totaled and all the data is stored in array A{i).

After data input, since MX is the mean value callout command, again, using a FOR*NEXT statement, the
mean value is subtracted from each data stored in the array and the result is displayed.

Let's perform the following example using this program.
Example: number of data =8

Data: 55, b4, 51, 65, b3, 53, 54, 62

If this data is executed, the result will be as shown below.

Operation:
DEFM1(Ed ‘VAR: 36 PRG: 1600
RUNED N=7?
8Eg ?
55 ?
549 ?
52 MX= 53.375

NO. 1= 1.625
NC. 2= 0.625
NO. 3=-2.375
NO. 4= 1.625
NO. 5=-0.375
NO. 6=-0.375
NO. 7= 0.625
CONT NO. 8=-1.375

a2l (8] @) B (@
sl 18| e 8] |8
=zl |1=Z| |1Z| |Z] |=
S &8 & &5 5

(=]
=]
=
=

(=)
o
=
=

* When the array is used in this manner, be sure to expand the memory capacity.

Furthermore, the commands to callout the result of the standard deviation in this example are shown below.

CNTovennn number of data (7}

SX i e sum (Z x)

SX2 ..o sum of squares (Z x?)
MX.............. mean (X)

SDX standard deviation (0, _,)
SDXN............ standard deviation (0)

Example 3: Make a program to obtain mean test score and standard deviation o» and each student’s score
deviation value.

Refer to example 1.

Deviation value SS = E——E)—Cn—)—LO— + 50
1@ SAC
20 INP N
30 FOR =1 TO N
49 INP D
5@ STAT D
60 ACI)=D
7@ NEXT |

80 PRT “MX=",;MX, 'SDXN=";SDXN
99 FOR I=1 TO N
100 S=CACI)-MX)X10/SDXN+50
110 PRT “NO.” ;t.7”=";
120 NEXT |
130 END
In this program, line numbers 10 to 70 are the same as Example 1, however, the program for calculation

and display from line 80 on is different.
Deviation value SS is obtained at line 100. This deviation value is obtained by each student’s score using

the FOR-NEXT statement.

In the above manner, using the built-in standard deviation function, the mean or standard deviation can be
directly incorporated into the program.

Furthermore,

To input with frequency, it is performed similarly to manual calculation. Also, when incorporating data
input into a program, the deletion and correction of erroneously input data must be accomplished man-
ually.

® Regression Analysis and Correlation Coefficients
As a statistical management function, in addition to standard deviation calculation, a regression analysis
(2 variable statistics) calculation function is also incorporated.

For regression analysis calculation, only linear regression is built-in. By using this linear regression, however,
logarithmic regression, exponential regression and power regression can be obtained using the program.

Linear regression calculation

® The linear regression formula is ¥ = A+Bx. Constant term A and regression coefficient B are calculated as
shown below.
_Zy—B-Zx 5= n-Ixy—Zx-Zy
n n-Xx*—(Zx)?

A

® Correlation coefficient r of the input data pair is calculated using the formula shown below.
n-Zxy—2x-2y
JIn-Zx*—(Zx)?*}{n-Zy* —(Zy)?)

® These are handled in the program in the same manner as standard deviation calculation.
— 71 —

r=

Example: Data input is performed manually. Using the output computation result, assemble a program to
calculate constant term A, regression coefficient B, correlation coefficient ¥ and coefficient of
determination (7?), and covariance { Zxy —n+x+y

n—1
19 PRT ““A=" ;LRA.,””B=":;LRB,"R=",;COR,”Rt2=";CORT2
20 X=(SXY-CNTXMXXMY)/(CNT=-1)
30 PRT X
49 END

Since this program is only a simple display program, data input is performed manually.

Data input methods are shown below.

x data , y data
or
Xx data , y data ; frequency

The “LRA’ used here is constant term A, “LRB’ is regression coefficient B and “COR" is correlation
coefficient r. Also, the coefficient.of determination and covariance are calculated using calculation formulas
and displayed.

Furthermore, the functions for displaying the results of regression analysis are shown below.

CNT number of data (n)

SX . sum of x (Zx)

SY . sum of ¥ (Zy)

SX2 .. sum of squares of x (Zx?)

SY2 ... sum of squares of y (Z?)

SXY . sum of products of data (Zx))
MX .o mean of x (X)

MY . mean of ¥ (V)

SDX ... standard deviation of X (x0n-1)
SDY standard deviation of ¥ (yon-1)
SDXN standard deviation of X (xgn)
SDYN standard deviation of y (y0on)
LRA _ L constant term (A)

LRB regression coefficient (B)

COR correlation coefficient (r)

EOX estimated value of x (X)

EQY estimated value of y ()

In this manner, since regression analysis is automatically calculated using only the input data, it is fully
usable for programs or display programs.
SAC

Furthermore, when data is input manually, be sure to press[Fi) gg prior to input.
Logarithmic regression calculation
® The logarithmic regression formula is y=A+B-inx.

@ This logarithmic regression is performed using the linear regression calculation function. Data input
method is different from linear regression, so it is convenient for input in the program.

Example: Assemble a program using the linear regression analysis function to perform logarithmic regres-
sion analysis only by input data x and y.

Furthermore, analysis result output is performed manually and not included in the program.

10 SAC

20 INP X.Y

30 STAT LN X.,Y
40 GOTO 20

This program is a simple program with only an input portion. It is composed of the SAC command which
clears the datad summation memory, the INP statement and data input STAT statement.
—_— 72 p—

This STAT statement employs logarithm In of x. Because the regression formula is y=A+B-InX, y can be
input as is. However, X must be input as the logarithm of x.

In this manner, a program is assembled for the input portion only. Qutput can also be performed manually.
However, for this program, after data input, it is necessary to stop the program (press Moog(@) } and press

the function key for output.
Also, the number of data must be input initially to obtain automatic termination and to display the ana-

lysis results such as the standard deviation example.
Furthermore, since this program has 1 as a frequency, to make it possible to input frequencies, assemble it
as shown below.

1@ SAC

20 INP X,Y.Z

30 STAT LN X.,Y:Z

49 GOTO 20
However, since the frequency input cannot be omitted in this program, even when there is only one, be sure
to input 1",

Exponential regression calculation
® The exponential regression formula is y = A-eB¥ (Iny=InA+B-x).

® This exponential regression is performed using the linear regression analysis function the same as loga-
rithmic regression.

Example: Assemble an input/output program for exponential regression analysis. The output displays
constant terms, coefficients and correlation coefficients.
1@ SAC
20 INP ““DATA="",N
30 FOR 1=+1 TO N
4Q INP “X="",X.,"Y=",Y
5@ STAT X, LN Y

6@ NEXT I
70 PRT “A=",EXP LRA,”B=";LRB," "R=";COR
80 END

Lines 10 to 60 of this program use a method similar to previous programs. However, data Y is not used as is
but is input as logarithm In. Because the regression formula is Iny=InA+B-Xx, ¥ must be input as the
logarithm of ¥ {Iny). This input portion, initial input of number of data is performed using a FOR-NEXT
statement.

The output portion constant term A, in order to be used as is, is computed as In A. To obtain A, it is
necessary to obtain the anti-logarithm of In A and calculate EXP A (eA) using the exponential function.

The result becomes constant term A.
Furthermore, regression coefficient B and correlation coefficient ¥ may be used as they are.

Power regression calculation
® The power regression formula is y=A-xB(lIny=inA+B-Inx).

® This power regression is also performed using the linear regression analysis function.

Example: Assemble a program for power regression analysis that displays constant terms, regression co-
efficients and correlation coefficients as analysis results and thus obtains estimated values.

10 SAC

20 INP "“DATA=",N

30 FOR 1=1 TO N

4Q INP “X=",X.,"Y=",Y

50 STAT LN X,LN Y

60 NEXT i

7@ PRT “A=".EXP LRA,”B=";LRB,"”"R=";COR
80 INP “X OR Y".,Z$ ’

9@ IF z="Y"” THEN 130
100 INP “Y=",Y

110 PRT EXP EOX LN Y
120 GOTO 80

130 INP “X=",X

1490 PRT EXP EOY LN X
150 GOTO 80

Lines 10 to 70 in this program have the same type of input/output portion but the data input using the
STAT statement on line 50 is different from previously.

It inputs both data x and y as logarithm In. Since the regression formula is Iny=InA+B-Inx, it is necessary
to input the logarithm of data x and y.

Since A in the output portion is also output in the form of logarithm InA, anti-logarithm A is obtained.
And, the estimated value calculation program has two cases. One estimates Y from data x. The other
estimates X from data y. First, judgement is performed on lines 80 and 90. In other words, if Z$ is X, input
data) to obtain X. 1§ Z$is Y, input data X to obtain g

In this manner, even power regression calculation can be accomplished easily using the program.
If an error is made when composing the data input portion of the program, it is necessary either to per-
form manually or to include an error recovery operation in the program.

4-5-8 Password

For this equipment, passwords can be assigned to protect composed programs. A password is a “‘code
name.” When the program composer or equipment operator does not want other persons to know about
program contents, or does not want the program to be changed by others, if a password is attached, “LIST"
or “CLR" commands cannot be used.

A password is in the form as shown below.

PASS “ABC"”

Letters or numbers in quotation marks, like “ABC", become the password. Any number of letters or num-
bers up to 8 characters can be used.

Examples: PASS “CASIO”
PASS HS
PASS “AZ—1"

Since passwords are effective for each program area (PO to P9}, passwords can only be attached to only PO
or P9.

The password can be cleared by clearing the entire program using the “CLR ALL" command or by re-
inputting the same password.

If a password is input following “LIST,"” the "LIST"" command can be temporarily cleared.

Example:

PASS “CASIO" B8 Password is set

LIST “CASIO" B8 Password is temporarily cancelled (or LIST 20 "CASIO").

This temporary password cancellation is only effective for the LIST command at the time of input. If the
password is not input again following that, a password error will occur.

4.5-9 Option Specifications

m CMT (cassette magnetic tape)

An MT tape recorder can be connected to this equipment for use as an external memory device. Since
this MT can store programs and data, important programs, etc., can be saved. Another type of recorder
can also be used for recording. Also, if the recorder has a remote control terminal, remote control can be
accomplished from the main unit through the optional adaptor FA-2, so it is more convenient if a remote
control terminal is available. Refer to the FA-2 instruction manual for detailed instructions on how to

connect this calculator to a tape recorder.

Furthermore, since the MT described here is a CMT (cassette tape recorder) with a remote terminal, if
an MT is used without a remote terminal, the MT must be operated manually according to this equip-
ment's operation. .

Also, start and stop for recording and playback can be remote controlled but fast forward and rewind
cannot be remote controlled. (Hereafter referred to as CMT.)

® Program SAVE/LOAD
The command for saving a program is shown below.

SAVE [#n “filename”] {(nis 0 to 9, items enclosed in brackets can be omitted)

#n indicates the program area. If it is #0, the program in PO will be stored. If it is #3, the program in P3
will be stored.

Up to 8 identical characters composed of letters, numbers or symbols can be used for a file name.

Example: A
“BBB’

This #n and file name can be omitted. |f #n is omitted, the program in the program area being used
when the SAVE command is executed will be stored.

Furthermore, the program stored using this SAVE command is the program in the designated program
area. |f all the programs written in all program areas (PO to P9} are to be stored at the same time, use the

SAVE ALL command (See page 77).

Operation procedure:

(1) Mount a tape and note the counter number.

(2) Start the CMT in the record position.

(3) Operate SAVE [#n “filename’’] B8 .

(4) When program recording is complete, the tape will stop automatically. (Stop the tape manually if

the CMT does not have a remote control terminal.)

* Since the SAVE command can only be executed manually, it cannot be used by writing it in the pro-

gram.

The command to callout a program recorded on the CMT is shown below.

LOAD [#n “filename’’] (nis 0 to 9, items enclosed in brackets can be omitted)

#n indicates the program area of the program to be called out. If it is Pt the program will be loaded in P1.
The file name is similar to SAVE command. [t can be omitted. If omitted, the program written initially
after start will be loaded. ’

Also, if #n is omitted, the program in the program area being used when the LOAD command is executed
will be loaded.

This LOAD command can be accomplished manually or written in the program.

75.

Operating procedure:

When performed manually:

1) Mount the tape just prior to the designated position (2 to 3 numbers before) using the counter.

2) Start the CMT with a remote terminal using the playback position.

3) Operate LOAD [#n ““filename”] B9 .

4) For a CMT without a remote terminal, start it following the LOAD command in the playback position.

5) When program callout is complete, the tape will stop automatically. (Stop the tape manually if the
CMT does not have a remote control terminal.)

Display during program load l PF: AAAR |

program ﬂle—trJ L—r—l——file name

Display when program load is complete | READY Pn J

* Even if a previous program remains in a program area where you want to load a program, the program
on the tape can be loaded correctly. In this case, the old program contents will be cancelled from the
initial line number of the new program on and the new program will be {oaded.

Example:
Program remaining in PO Newly loaded program Program after LOAD
‘ 10 INP A 100 INPX 10 INPA
90 PRTB + 200 PRTY l 90 PRTB
100 FORI=1TO 100 100 INP X
300 PRTC 200 PRTY

For writing the LOAD command in a program:

(1) Write the LOAD command in the program.

(2) Start the CMT with a remote terminal using the playback position.

(3) The program with the LOAD command written in is started in the RUN mode ().

(4) For a CMT without a remote terminal, start it following the program start using the playback position.
(5) When program callout is complete, the tape will stop automatically and the loaded program will start.

When the LOAD command is executed by writing in the program, after LOAD is completed, the written
program will be executed in sequence.

Example:

Execution program Filename A" Filename "'B"’ Filename ""C"*

PO: 10 LOADH#QO A" 100 INP X 100 INP Y 100 INP Z
20 LOAD#Q“B” f § 5

30 LOAD#0Q‘C” 500 GOTO 20 500 GOTO 30 500 END

For this kind of program, first, if line number 10 is executed, the program with filename A" will be
read. Upon completion, program ““A’" will be executed. Upon completion of program A", control re-
turns to line 20 and the program with file name "“B’" will be read and executed. In this manner, when
written in the program, read and execution will be accomplished in sequence.

® Data PUT/GET
Data storage is performed using the PUT command.

PUT [“filename’’] variable (items enclosed in brackets can be omitted)
The variables are $,A and B to T9.

To store variables from A to Z, write "A , Z"".

Examples: TOSAVESABCD _PUT [“filename”] $, A, D
ToSAVEAtWZ............. PUT [“filename”] A ,Z
ToSAVE Ato Zand AOto T9 .. .PUT [“filename”] A, T9
or

PUT ["“filename”] A, A(199)

* For variable writing in this case, A , Z'' means from A to Z. Since storage is from A to Z in sequence,
larger to smaller sequence, such as Z to A cannot be written.

Example: PUT H, A—— error

Data callout is performed using the GET command.
GET [“filename”] variable (items enclosed in brackets can be omitted)

This variable is written as “$, A" or “$, A, Z" in the similar way to the PUT example.
PUT command and GET command can be executed manually or written in the program.
Manual operation procedure can be performed similar to program SAVE and LOAD.

For execution by writing into the program, start and stop can be accomplished automatically for a CMT
with a remote terminal. However, for a CMT without a remote terminal, it is necessary to use good timing.

Example: To store To callout
z 10 GET "D"A,Z
490 PUT "D A, Z Z
500 END

For a program as shown above, first, data storage is accomplished as shown below.

(1) Mount the tape and note the counter number.

(2) Start the CMT in the record position.

(3) Start the program with the PUT command written.

(4) When the PUT command is read, the tape will start and will stop automatically upon completion.

Then, data callout is accomplished as shown below.

(1) Mount the tape slightly before the designated position using the tape counter number.

(2) Start the CMT in the playback position.

(3) Start the program with the GET command written in.

(4) When the GET command is read, the tape will start and will stop automatically upon completion.

Display during LOAD VF:D J
data file— L——fjle name

Furthermore, the file name can be omitted similar to program SAVE/LOAD.

® SAVE/LOAD of entire program/data
For the previous SAVE/LOAD, the program is written in one program area and called out. However,
even for 1 program which is composed and spread over several program areas such as PO to P3 or P2 to
P6. or for the data required for the program, the entire program area and data can be saved/loaded.
The file commands for this entire memory are shown below.

SAVE ALL [“filename”]

LOAD ALL [“filename”]

(items enclosed in brackets can be omitted)

This operation is performed similar to program SAVE/LOAD.

Display during entire memory file LOAD r PVF:ZZ J

—J L1_I filename

entire memory file

* |f this LOAD ALL command is executed, since all of the programs and data stored on the tape will
pe newly read in, the DEFM command is also used to expand tha data memory when LOAD ALL

is executed.

® File check written on tape
To check the accuracy of the program or data written on the tape, a VER command is used.

VER [“filename”] (items enclosed in brackets can be omitted)

The operating procedure is similar to program LOAD.

= Printer
A mini-printer {FP-10) can be connected to this equipment. If this printer is connected, program list and
data list can be obtained. Also, calculation result output, etc., at the time of execution can be printed.

Furthermore, refer to the FP-10 instruction manual for connection and operation procedures.

To print program list or data list, press and PRT mode {"’PRT’* display) will be selected.
Also, for calculation result print, the PRT mode is designated manually or can be written in the
program and partial printing can be accomplished.

PRT mode cancellation can be manually accomplished by pressing or accomplished by writing
in the program.

® Program list
To print a program list, execute the LIST command in the RUN mode.

#0to9
When the line number is written, the list will be printed from that line number. If #0 to 9 is written, that
program areas (PO to P9) list will be printed.
Furthermore, if a password is added, the password is required. However, if there is no password, it is not
required.

LIST [{ Line number}] [“password"] (items enclosed in brackets [] can be omitted)

® Data list
To print the data list, execute the LIST command in the RUN mode.

LIST V

Using this command, all data {variable) contents will be printed.

o Entire program/data list
To print the PO to P9 program list and data list at the same time, execute the LIST ALL command in the
RUN mode.

LIST ALL

The LIST ALL command prints the entire PO to P9 program list. However, print areas having no input
will not be printed.
Also, for programs with a password, PASS will be printed.

e Calculation results

For printing of calculation results, if the program is executed following PRT mode selection, after that,
“the output results will be printed at the same time they are displayed using PRT statement and DMS
statement.

Also, if the PRT mode designation is written in the program, only the result desired to be printed will
be printed.

Furthermore, for calculation result output, if the designation using the CSR function is prior to the
present print position, since the print head cannot move backwards, printing will be continued.

78

Error Message List

Cause

Corrective measure

® Number of steps insufficient.
Program cannot be written in.
® Stack overflow

® Clear unneeded programs or
reduce the number of mem-
ories.

@ Divide the formulas and
make them simpler.

® Format error in program, etc.

® | eft-hand and right-hand formats
differ in an assignment
statement, etc.

® Correct error in input
program, etc.

® The result of a numeric
expression calculation exceeds
10100

® Qutside the numeric function
argument input range

® Result is indefinite or impossible

® Correct the calculation
formula or data
® Verify the data

® No designated line number for
GOTO statement or GOSUB
statement

® Correct the designated line
number

® For a command function that
requires an argument, the argu-

ment is outside the input range.

® The array argument is outside O
to 199 in the one-dimensional

array or outside (0, 0) to (19, 9).

in the two-dimensional array.

® Correct the argument error

® A variable is used which is not
defined by the DEFM command.

® |ncrease the variable if
necessary.

® RET statement comes out when
subroutine is not being executed

® NEXT statement comes out
when not in FOR loop

® Subroutine levels exceed 10
levels

® FOR-NEXT loops exceed 8
levels

® Remove unneeded RET
statements or NEXT
statements

® Keep the subroutines or
FOR-NEXT statement loops
within required levels

® A password is set and an
unusable command such as CLR
or LIST was used

® A password is set and a different
password was input

® input the correct password

Error code Meaning

: Memory overflow or

1 system stack
overflow.

2 Syntax error

3 Mathematical error

a Undefined line
number error

5 Argument error

6 Variable error

7 Nesting error

8 Password error

9 Option error

@ No printer or CMT is connected
and execution is attempted in the
PRT mode or optional command
such as SAVE is executed

® Connect printer or CMT
® Cancel PRT mode

Program Command L.ist

Classification

Command
name

Format

Function

Input
statement

INP

INP variable string

Causes data to be entered from the
keyboard during executicn of a pro-
gram. The program execution is
stopped until after the end of input.
P.57

KEY

Character variable = KEY

Reads a character entered during ex-
ecution of a program and assigns it to
a character variable. Since the pro-
gram is not stopped by this command,
nothing is assigned to the character
variable if no key-in entry is made.

P. 58

Output
statement

PRT

PRT output control

function {’} output

aement ({1})

Outputs a specified output element
in a specified format.

P. 58

DMS

DMS variable

Converts a variable value to the sexa-

gesimal notation, and displays it.
P. 59

WAIT

WAIT »n
*0 £ n< 1000

Determines the display time using a
PRT statement or a DMS statement
P. 59

Branching

GOTO

line number
variable

GOTO {

Causes control to jump to the speci-
fied line number. P. 39

]F“_{TH_EN}._.

IF comparison
{THEN line number}
; command

Causes control to jump to the line
number following THEN, or executes
the command following “ ; "', if the
result of the comparison is true.

Causes control to proceed to the next
line number if the result of the com-
parison is false. P. 44

GSB

line number}

GSB {variable

Calls the subroutine with the speci-
fied line number for execution. After
the subroutine is executed, control
returns to the GSB statement by the
RET statement to proceed to the
command following that statement.
P. 64

RET

RET

Signifies the end of a subroutine; re-
turns control to a line number next
to the GSB statement. P. 64

—

80.

Classification

Command

Format

Function

name
Declares the beginning of a loop in
yvhi_ch numerical value v changes from
FORv=e,TOe, [STEP &,] initial value e, to terminal value e, in
increments of e5.
FOR * v denotes a numerical var- The loop is repeated
iable, and €;, €, and e3 re- | [e2 -—elj +1")
. - times
present a numerical ex- es
Loopin pression respectively. between the FOR and NEXT state-
ping ments. If the increment e is omitted,
ey isregarded as ' 1", P. 49
Signifies the end of a FOR loop. If
the result of v plus €3 is equal to or
NEXT NEXT smaller than e,, the loop is repeated
again. If it is greater than e,, control
proceeds to the line next to the
NEXT statement. P. 49
Stops the execution of a program
. temporarily to bring the system into
sEt);ecu“O" STOP STOP a key-in wait state. The execution
P can be continued by pressing the
key. P. 37
Signifies the end of a program, the
. system returning to its pre-execution
S::cutlon END END state. The execution of a program,
once ended, cannot be continued even
if the key is pressed. P. 30
Data. VAC VAC Clears all variable data for a program.
clearing P.42
Program Displays a tisting of all the statements
I'stii LIST LIST [line number] in a program from the specified line
isting number downward. P. 32
Datalisting | LIST V LIST Vv Displays @ listing of the data o
Program/data Displays a listing of all the statements
rog LIST ALL LIST ALL in a program and the data in memo-
listing ries. P.78
Program . Causes a program to start from the
execution RUN RUN [line number] specified line number. P. 31
CLR CLR Clears the currently specified program
p area of a program. P. 30
rogram -
erasing
CLR ALL CLR ALL Clears all the programs. b 30
Upon entry of a password, such op-
Proaram erations as LIST and LOAD cannot
rogection PASS PASS ‘password’’ be performed. If a password has al-
p ready been entered, it is cancelled.

P. 74

Specifications

= Type
FX-702P

® Basic calculation functions
Negative numbers, exponents, arithmetic operations including parentheses (addition, subtraction, multi-
plication and division, with priority sequence discrimination function — true algebraic logic)

W Built-in functions
Trigonometric and inverse trigonometric functions (unit of angular measure in degrees, radians or gradi-
ents), hyperbolic and inverse hyperbolic functions, logarithmic and exponential functions, factorial, square
root, powers, coordinate conversion, integerize, remove integer portion, absolute value, symbolize,
decimal < sexagesimal conversion, effective number of digits designation, decimal designation, random
number, T

= Statistical calculation functions .
standard deviation: number of data, sum, square sum, mean, standard deviation (2 kinds)
linear regression: number of data, sum of x, sum of), square sum of x, square sum of », data product
sum, mean of x, mean of y, standard deviation of x (2 kinds), standard deviation
of ¥y (2 kinds), constant term, regression coefficient, correlation coefficient, estimated
value of x, estimated value of ¥
® Commands
INP, KEY, PRT, DMS, IF-THEN, GOTO, FOR, NEXT, GSB, RET, WAIT, STAT, DEL, SAC, MODE,
SET, STOP, END, SAVE, SAVE ALL, LOAD, LOAD ALL, GET, PUT, VER, PASS, RUN, LIST, LIST V,
LIST ALL, CLR, CLR ALL
& Character functions
LEN, MID ‘
u Qutput control function
CSR
= Calculation range
+£1 x 107%° to £9.999999999 x 10% and 0
Internal calculation uses 12 digit mantissa

Functional digit capacity Input range Result accuracy
sinX, cosXx, tanx [x]< 1440° (87rad, 1600gra) 10th digit *1
sin~'x, cos™lx [x] <1 — -
tan~1x - =
sinh x, coshx |x]1<£230 _—
tanh x - -
sinh~!x x| < 10% - -
cosh~tx 1 £x<£10% - =
tanh~!x [x]<1 —
logx, Inx x >0 - -
ex x| <230 ’ — -
NE x 20 -
x! x £69 — =
x¥ (x1y) When x <0, y is a natural number - =
R->P [x1<10%, [y|<10% - =
P—R |8 | < 1440° (87rad, 1600gra) - =
decimal = sexagesimal Within £99999.9999999 - =

® Program system
stored system
B Program language

BASIC
-82-

m Number of steps
80 to maximum of 1680 steps (with power back-up)

& Number of built-in programs
maximum of 10 groups (PO to P9)

= Number of memories
26 to maximum of 226 memories plus exclusive character variable ($) (with power back-up)

m Number of stacks

subroutine — 10 levels
FOR-NEXT loop — 8 levels
numerical value — 10 levels

calculation elements — 20 levels
= Display system and method
10-digit mantissa (including minus sign), 2-digit exponential portion, liquid crystal display, also sexagesimal
display, F1, F2, ARC, HYP, RUN, WRT, STOP, DEG, RAD, GRA, TRACE, PRT situation display
= Display elements
20-digit dot matrix display (liquid crystal)
= Main components
C-MQOS LS! and others
= Power consumption
0.01 W (max.)
u Power source

2 lithium batteries (CR2032).
The unit gives approximately 240 hours (approx. 200 hours with optional equipments) continuous opera-

tion on type CR2032.

= Auto power-off
Power is turned off automatically approximately 8 minutes after last operation

u Ambient temperature range
0°C to 40°C (32°F to 104°F)

m Dimensions
17H x 165W x 82mmbD (5/8"'H x 6-1/2""W x 3-1/4"'D)

u Weight
176 g (6.2 oz) including batteries

GUIDELINES LAID DOWN BY FCC RULES FOR USE OF THE UNIT IN THE US.A.
(not applicable to other areas).

A.
This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in
strict accordance with the manufacturer’s instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits for a Class B computing device in
accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installation. However, there is no guarantee
that interference will not occur in a particular installation. If this equipment does cause interference to
radio or television reception, which can be determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the following measures:

.. reorient the receiving antenna

.. relocate the computer with respect to the receiver

.. move the computer away from the receiver

. plug the computer into a different outlet so that computer and receiver are on different branch
circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional
suggestions. The user may find the following booklet prepared by the Federal Communications Commission
helpful: “How to ldentify and Resolve Radio-TV Interference Problems’. This booklet is available from the
US Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.
B. When connected with the mini-printer FP-10 (on sale in the near future).
WARNING: This equipment generates, uses, and can radiate radio frequency energy and if not installed
and used in accordance with the instructions manual, may cause interference to radio communications. As
temporarily permitted by regulation it has not been tested for compliance with the limits for Class A
computing devices pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable

protection against such interference.
Operation of this equipment in a residential area is likely to cause interference in which case the user at his
own expense will be required to take whatever measures may be required to correct the interference.

-84-—

CASIO.

111C SA & Printed in Japan
Scanned in USA by Dale

